Detailed Information

Cited 17 time in webofscience Cited 19 time in scopus
Metadata Downloads

Self-Assembly of Pulverized Nanoparticles: An Approach to Realize Large-Capacity, Long-Lasting, and Ultra-Fast-Chargeable Na-Ion Batteriesopen access

Authors
Park, Jun-HyoungChoi, Yong-SeokKim, ChangHyeonByeon, Young-WoonKim, YongminLee, Byeong-JooAhn, Jae-PyoungAhn, HyojunLee, Jae-Chul
Issue Date
10-Nov-2021
Publisher
AMER CHEMICAL SOC
Keywords
ultrafast charging; stress-induced dislocation; dislocation pipe diffusion; pulverization; self-assembly
Citation
NANO LETTERS, v.21, no.21, pp 9044 - 9051
Pages
8
Indexed
SCIE
SCOPUS
Journal Title
NANO LETTERS
Volume
21
Number
21
Start Page
9044
End Page
9051
URI
https://scholarworks.gnu.ac.kr/handle/sw.gnu/3000
DOI
10.1021/acs.nanolett.1c02518
ISSN
1530-6984
1530-6992
Abstract
The fabrication of battery anodes simultaneously exhibiting large capacity, fast charging capability, and high cyclic stability is challenging because these properties are mutually contrasting in nature. Here, we report a rational strategy to design anodes outperforming the current anodes by simultaneous provision of the above characteristics without utilizing nanomaterials and surface modifications. This is achieved by promoting spontaneous structural evolution of coarse Sn particles to 3D-networked nanostructures during battery cycling in an appropriate electrolyte. The anode steadily exhibits large capacity (similar to 480 mAhg(-1)) and energy retention capability (99.9%) during >1500 cycles even at an ultrafast charging rate of 12 690 mAg(-1) (15C). The structural and chemical origins of the measured properties are explained using multiscale simulations combining molecular dynamics and density functional theory calculations. The developed method is simple, scalable, and expandable to other systems and provides an alternative robust route to obtain nanostructured anode materials in large quantities.
Files in This Item
There are no files associated with this item.
Appears in
Collections
공학계열 > Dept.of Materials Engineering and Convergence Technology > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Ahn, Hyo Jun photo

Ahn, Hyo Jun
대학원 (나노신소재융합공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE