Cited 6 time in
Neural Min-Sum Decoding for Generalized LDPC Codes
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Kwak, H. | - |
| dc.contributor.author | Kim, J. | - |
| dc.contributor.author | Kim, Y. | - |
| dc.contributor.author | Kim, S. | - |
| dc.contributor.author | No, J. | - |
| dc.date.accessioned | 2023-01-04T07:26:01Z | - |
| dc.date.available | 2023-01-04T07:26:01Z | - |
| dc.date.issued | 2022-12 | - |
| dc.identifier.issn | 1089-7798 | - |
| dc.identifier.issn | 1558-2558 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/29972 | - |
| dc.description.abstract | In this letter, we investigate the min-sum (MS) and neural MS (NMS) decoding algorithms for generalized low-density parity-check (GLDPC) codes. Although the MS decoder is much simpler than the a posteriori probability (APP) decoder commonly used for GLDPC codes, the MS decoder has not been considered mainly due to its inferior decoding performance. However, we show that the performance can be improved by i) employing the NMS decoding algorithm and ii) optimizing the component parity check matrix (PCM). For the four representative short GLDPC codes in the literature, experimental results show that the NMS decoding performance with the optimized component PCM significantly outperforms the MS decoding performance and even outperforms the APP decoding performance for some cases. IEEE | - |
| dc.format.extent | 1 | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | Institute of Electrical and Electronics Engineers Inc. | - |
| dc.title | Neural Min-Sum Decoding for Generalized LDPC Codes | - |
| dc.type | Article | - |
| dc.publisher.location | 미국 | - |
| dc.identifier.doi | 10.1109/LCOMM.2022.3208834 | - |
| dc.identifier.scopusid | 2-s2.0-85139398566 | - |
| dc.identifier.wosid | 000897174300006 | - |
| dc.identifier.bibliographicCitation | IEEE Communications Letters, v.26, no.12, pp 1 - 1 | - |
| dc.citation.title | IEEE Communications Letters | - |
| dc.citation.volume | 26 | - |
| dc.citation.number | 12 | - |
| dc.citation.startPage | 1 | - |
| dc.citation.endPage | 1 | - |
| dc.type.docType | Article | - |
| dc.description.isOpenAccess | N | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalResearchArea | Telecommunications | - |
| dc.relation.journalWebOfScienceCategory | Telecommunications | - |
| dc.subject.keywordAuthor | Codes | - |
| dc.subject.keywordAuthor | Decoding | - |
| dc.subject.keywordAuthor | Generalized low-density parity-check (GLDPC) code | - |
| dc.subject.keywordAuthor | Linear codes | - |
| dc.subject.keywordAuthor | Message passing | - |
| dc.subject.keywordAuthor | min-sum (MS) decoding | - |
| dc.subject.keywordAuthor | neural min-sum (NMS) decoding | - |
| dc.subject.keywordAuthor | Optimization | - |
| dc.subject.keywordAuthor | Phase change materials | - |
| dc.subject.keywordAuthor | Standards | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
