Cited 1 time in
Energy Saving Evaluation with Low Liquid to Gas Ratio Operation in HVAC&R System
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Ha, Ju-wan | - |
| dc.contributor.author | Kim, Yu-jin | - |
| dc.contributor.author | Park, Kyung-soon | - |
| dc.contributor.author | Song, Young-hak | - |
| dc.date.accessioned | 2023-01-02T06:17:02Z | - |
| dc.date.available | 2023-01-02T06:17:02Z | - |
| dc.date.issued | 2022-10 | - |
| dc.identifier.issn | 1996-1073 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/29472 | - |
| dc.description.abstract | Previous studies have been conducted by employing various methods to reduce the condenser water temperature, a crucial control variable to consider when attempting to improve the operational efficiency of a chiller. The existing literature dealing with the effects of low-condenser water temperatures is limited, as the cooling water flow rate is often considered the operating variable of the condenser loop. However, to produce additional low condenser water temperatures, the approach temperature of the cooling tower in the system must be reduced. To reduce the approach temperature, it is necessary to review the physical behavior and efficiency of the cooling tower according to the change in the liquid to gas ratio (LGR), which is dependent upon the condenser water flow rate and the cooling tower fan air flow rate within the condenser loop. However, this process has rarely been reviewed in previous studies. Therefore, this study developed a new cooling tower control algorithm from the LGR perspective, and the operational effectiveness was quantitatively reviewed using EnergyPlus. Compared to the conventional conditions, when the cooling tower operation algorithm for low-approach temperatures was applied, the annual energy saving was 27.0%, the average chiller COP was improved by 27.8%, and the average system COP was improved by 47.4%. Furthermore, even when the algorithm was not applied at the same condenser water set temperature, the annual energy saving was 15%. The average COP of the chiller and COP of the system is improved by 2% and 23.2%, respectively. These results indicated that when a cooling tower is operated with a low LGR, even under the same outdoor air and load conditions, the cooling system's efficiency can be improved with a change in the control algorithm without installing additional high-efficiency equipment. | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | Multidisciplinary Digital Publishing Institute (MDPI) | - |
| dc.title | Energy Saving Evaluation with Low Liquid to Gas Ratio Operation in HVAC&R System | - |
| dc.type | Article | - |
| dc.publisher.location | 스위스 | - |
| dc.identifier.doi | 10.3390/en15197327 | - |
| dc.identifier.scopusid | 2-s2.0-85139969197 | - |
| dc.identifier.wosid | 000866958600001 | - |
| dc.identifier.bibliographicCitation | Energies, v.15, no.19 | - |
| dc.citation.title | Energies | - |
| dc.citation.volume | 15 | - |
| dc.citation.number | 19 | - |
| dc.type.docType | Article | - |
| dc.description.isOpenAccess | Y | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalResearchArea | Energy & Fuels | - |
| dc.relation.journalWebOfScienceCategory | Energy & Fuels | - |
| dc.subject.keywordPlus | DIRECT COOLING-TOWER | - |
| dc.subject.keywordPlus | CHILLER PLANTS | - |
| dc.subject.keywordPlus | PERFORMANCE ANALYSIS | - |
| dc.subject.keywordPlus | WATER | - |
| dc.subject.keywordPlus | TEMPERATURE | - |
| dc.subject.keywordPlus | OPTIMIZATION | - |
| dc.subject.keywordPlus | DESIGN | - |
| dc.subject.keywordPlus | MODEL | - |
| dc.subject.keywordPlus | AIR | - |
| dc.subject.keywordPlus | SIMULATION | - |
| dc.subject.keywordAuthor | liquid-gas ratio (LGR) | - |
| dc.subject.keywordAuthor | low-approach temperature | - |
| dc.subject.keywordAuthor | central chilled water system | - |
| dc.subject.keywordAuthor | efficiency improvement | - |
| dc.subject.keywordAuthor | cooling tower operation control | - |
| dc.subject.keywordAuthor | condenser water temperature | - |
| dc.subject.keywordAuthor | co-simulation | - |
| dc.subject.keywordAuthor | EnergyPlus | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
