Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

K-stability of Gorenstein Fano group compactifications with rank two

Full metadata record
DC Field Value Language
dc.contributor.authorLee, Jae-Hyouk-
dc.contributor.authorPark, Kyeong-Dong-
dc.contributor.authorYoo, Sungmin-
dc.date.accessioned2022-12-29T07:00:02Z-
dc.date.available2022-12-29T07:00:02Z-
dc.date.issued2022-11-
dc.identifier.issn0129-167X-
dc.identifier.issn1793-6519-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/29355-
dc.description.abstractWe give a classification of Gorenstein Fano bi-equivariant compactifications of semi-simple complex Lie groups with rank two, and determine which of them are equivariant K-stable and admit (singular) Kahler-Einstein metrics. As a consequence, we obtain several explicit examples of K-stable Fano varieties admitting (singular) Kahler-Einstein metrics. We also compute the greatest Ricci lower bounds, equivalently the delta invariants for K-unstable varieties. This gives us three new examples on which each solution of the Kahler-Ricci flow is of type II.-
dc.language영어-
dc.language.isoENG-
dc.publisherWorld Scientific Publishing Co-
dc.titleK-stability of Gorenstein Fano group compactifications with rank two-
dc.typeArticle-
dc.publisher.location싱가폴-
dc.identifier.doi10.1142/S0129167X22500835-
dc.identifier.scopusid2-s2.0-85143794927-
dc.identifier.wosid000884724900001-
dc.identifier.bibliographicCitationInternational Journal of Mathematics, v.33, no.13-
dc.citation.titleInternational Journal of Mathematics-
dc.citation.volume33-
dc.citation.number13-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMathematics-
dc.relation.journalWebOfScienceCategoryMathematics-
dc.subject.keywordPlusKAHLER-EINSTEIN METRICS-
dc.subject.keywordPlusGREATEST LOWER BOUNDS-
dc.subject.keywordPlusSYMMETRIC VARIETIES-
dc.subject.keywordPlusRICCI CURVATURE-
dc.subject.keywordPlusMANIFOLDS-
dc.subject.keywordPlusLIMITS-
dc.subject.keywordAuthorSingular Kahler-Einstein metrics-
dc.subject.keywordAuthorequivariant K-stability-
dc.subject.keywordAuthorGorenstein Fano group compactifications-
dc.subject.keywordAuthormoment polytopes-
dc.subject.keywordAuthorgreatest Ricci lower bounds-
dc.subject.keywordAuthorKahler-Ricci flow-
Files in This Item
There are no files associated with this item.
Appears in
Collections
자연과학대학 > ETC > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Park, Kyeong-Dong photo

Park, Kyeong-Dong
자연과학대학 (수학물리학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE