Effect of thioredoxin reductase 1 on glucocorticoid receptor activity in human outer root sheath cells
- Authors
- Sohn, K.-C.; Jang, S.; Choi, D.-K.; Lee, Y.-S.; Yoon, T.-J.; Jeon, E.K.; Kim, K.H.; Seo, Y.-J.; Lee, J.-H.; Park, J.-K.; Kim, C.D.
- Issue Date
- 2007
- Keywords
- Glucocorticoid receptor activity; Glucocorticoid-resistant alopecia areata; Thioredoxin reductase 1
- Citation
- Biochemical and Biophysical Research Communications, v.356, no.3, pp 810 - 815
- Pages
- 6
- Indexed
- SCOPUS
- Journal Title
- Biochemical and Biophysical Research Communications
- Volume
- 356
- Number
- 3
- Start Page
- 810
- End Page
- 815
- URI
- https://scholarworks.gnu.ac.kr/handle/sw.gnu/29020
- DOI
- 10.1016/j.bbrc.2007.03.065
- ISSN
- 0006-291X
1090-2104
- Abstract
- Alopecia areata (AA) is a common disease of patchy hair loss on the scalp that can progress to cover the entire scalp and eventually the entire body. Intralesional injection of corticosteroids is the first-line therapy for adult patients, however some patients do not respond to glucocorticoid treatment effectively. To delineate the molecular mechanism underlying glucocorticoid insensitivity, we examined the expression of glucocorticoid receptor (GR) and thioredoxin reductase 1 (TrxR1). In some case of glucocorticoid-resistant AA patients, the expression of TrxR1 was decreased in outer root sheath (ORS). We then investigated the effect of TrxR1 on GR activity using recombinant adenoviruses. Overexpression of TrxR1 markedly increased GR activity in ORS cells cultured in vitro. In addition, TrxR1 protected GR activity against H2O2. Finally, TrxR1-enhanced GR activity was significantly inhibited by the overexpression of dominant negative form of Trx (TrxC32S/C35S). These results suggest that decreased TrxR1 may be one putative cause for glucocorticoid resistance in AA, through the impact on intracellular redox system. ? 2007 Elsevier Inc. All rights reserved.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - College of Medicine > Department of Medicine > Journal Articles

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.