Detailed Information

Cited 16 time in webofscience Cited 19 time in scopus
Metadata Downloads

Property optimization of TRIP Ti alloys based on artificial neural network

Full metadata record
DC Field Value Language
dc.contributor.authorOh, Jeong Mok-
dc.contributor.authorNarayana, P. L.-
dc.contributor.authorHong, Jae-Keun-
dc.contributor.authorYeom, Jong-Taek-
dc.contributor.authorReddy, N. S.-
dc.contributor.authorKang, Namhyun-
dc.contributor.authorPark, Chan Hee-
dc.date.accessioned2022-12-26T09:45:32Z-
dc.date.available2022-12-26T09:45:32Z-
dc.date.issued2021-12-
dc.identifier.issn0925-8388-
dc.identifier.issn1873-4669-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/2868-
dc.description.abstractTransformation-induced plasticity (TRIP) Ti alloys are promising structural materials that offer high strength and ductility. However, these alloys often include heavy, expensive, and high-melting-point beta stabilizing elements such as V, Nb, Mo, and W. Herein, an artificial neural network (ANN) was used to develop a Ti-Al-Fe-Mn-based TRIP alloy comprising lighter and/or cheaper elements. The ANN model was trained with 30 experimental tensile datasets for heat-treated (830-920 degrees C) Ti-4Al-2Fe-xMn (x = 0-4 wt%) alloys, and used to generate 400 tensile datasets with more finely tuned composition and temperature intervals. Based on the predicted data, an 883 degrees C-heat-treated Ti-4Al-2Fe-1.4Mn alloy was produced (conditions not used in the training datasets), which exhibited ultra-high specific strength (289 MPamiddotcm3/g) and high elongation (34%). Thus, the ANN approach successfully led to the development of a new alloy while minimizing the number of labor-intensive and time-consuming experiments. (c) 2021 Elsevier B.V. All rights reserved.-
dc.language영어-
dc.language.isoENG-
dc.publisherElsevier BV-
dc.titleProperty optimization of TRIP Ti alloys based on artificial neural network-
dc.typeArticle-
dc.publisher.location스위스-
dc.identifier.doi10.1016/j.jallcom.2021.161029-
dc.identifier.scopusid2-s2.0-85109459888-
dc.identifier.wosid000687458000001-
dc.identifier.bibliographicCitationJournal of Alloys and Compounds, v.884-
dc.citation.titleJournal of Alloys and Compounds-
dc.citation.volume884-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.subject.keywordPlusBETA-TITANIUM ALLOY-
dc.subject.keywordPlusHIGH-YIELD STRENGTH-
dc.subject.keywordPlusTENSILE PROPERTIES-
dc.subject.keywordPlusMECHANICAL-PROPERTIES-
dc.subject.keywordPlusTRANSFORMATION-
dc.subject.keywordPlusPREDICTION-
dc.subject.keywordPlusTEMPERATURE-
dc.subject.keywordPlusEVOLUTION-
dc.subject.keywordPlusDESIGN-
dc.subject.keywordPlusPHASE-
dc.subject.keywordAuthorMachine learning-
dc.subject.keywordAuthorArtificial neural network-
dc.subject.keywordAuthorAlloy design-
dc.subject.keywordAuthorTransformation-induced plasticity-
dc.subject.keywordAuthorTitanium alloy-
Files in This Item
There are no files associated with this item.
Appears in
Collections
공과대학 > 나노신소재공학부금속재료공학전공 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Reddy, N. Subba photo

Reddy, N. Subba
공과대학 (나노신소재공학부금속재료공학전공)
Read more

Altmetrics

Total Views & Downloads

BROWSE