Cited 19 time in
Direct numerical simulations of droplet emulsions in sliding bi-periodic frames using the level-set method
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Kim, See Jo | - |
| dc.contributor.author | Hwang, Wook Ryol | - |
| dc.date.accessioned | 2022-12-27T06:54:17Z | - |
| dc.date.available | 2022-12-27T06:54:17Z | - |
| dc.date.issued | 2007-07-01 | - |
| dc.identifier.issn | 0021-9991 | - |
| dc.identifier.issn | 1090-2716 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/28331 | - |
| dc.description.abstract | We present a direct numerical simulation technique for droplet emulsions of Newtonian-Newtonian system in simple shear flow. The Lees-Edwards type boundary condition has been incorporated with the sliding bi-periodic frame of Hwang et al. [W.R. Hwang, M.A. Hulsen, H.E.H. Meijer, Direct simulation of particle suspensions in sliding bi-periodic frames, J. Comput. Phys. 194 (2004) 742] for the continuous flow field problem and the level-set method with the continuous surface stress (CSS) formulation has been used for accurate description of the sharp interfaces. Based on the standard velocity-pressure formulation of the finite-element method, we use the mortar element method for the implementation of the sliding periodicity and employ the discontinuous Galerkin (DG) method for the stabilization of the interface advection equation. We present numerical results on the morphological development for a single, two and multiple drops in sliding bi-periodic frames for the demonstration of the feasibility of the present method in investigation of the relationship between the morphology and the bulk material responses such as the shear viscosity and the first normal stress difference. (c) 2007 Elsevier Inc. All rights reserved. | - |
| dc.format.extent | 20 | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | ACADEMIC PRESS INC ELSEVIER SCIENCE | - |
| dc.title | Direct numerical simulations of droplet emulsions in sliding bi-periodic frames using the level-set method | - |
| dc.type | Article | - |
| dc.publisher.location | 미국 | - |
| dc.identifier.doi | 10.1016/j.jcp.2006.12.012 | - |
| dc.identifier.scopusid | 2-s2.0-34447282601 | - |
| dc.identifier.wosid | 000248854300032 | - |
| dc.identifier.bibliographicCitation | JOURNAL OF COMPUTATIONAL PHYSICS, v.225, no.1, pp 615 - 634 | - |
| dc.citation.title | JOURNAL OF COMPUTATIONAL PHYSICS | - |
| dc.citation.volume | 225 | - |
| dc.citation.number | 1 | - |
| dc.citation.startPage | 615 | - |
| dc.citation.endPage | 634 | - |
| dc.type.docType | Article | - |
| dc.description.isOpenAccess | N | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalResearchArea | Computer Science | - |
| dc.relation.journalResearchArea | Physics | - |
| dc.relation.journalWebOfScienceCategory | Computer Science, Interdisciplinary Applications | - |
| dc.relation.journalWebOfScienceCategory | Physics, Mathematical | - |
| dc.subject.keywordPlus | PARTICLE SUSPENSIONS | - |
| dc.subject.keywordPlus | NEWTONIAN DROP | - |
| dc.subject.keywordPlus | DEFORMATION | - |
| dc.subject.keywordPlus | FLUID | - |
| dc.subject.keywordPlus | FLOWS | - |
| dc.subject.keywordAuthor | direct numerical simulation | - |
| dc.subject.keywordAuthor | emulsion | - |
| dc.subject.keywordAuthor | Lees-Edwards boundary condition | - |
| dc.subject.keywordAuthor | sliding bi-periodic frame | - |
| dc.subject.keywordAuthor | level set method | - |
| dc.subject.keywordAuthor | continuous surface stress formulation | - |
| dc.subject.keywordAuthor | finite element method | - |
| dc.subject.keywordAuthor | bulk stress | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
