Detailed Information

Cited 9 time in webofscience Cited 9 time in scopus
Metadata Downloads

Frequency-based Data-driven Surrogate Model for Efficient Prediction of Irregular Structure's Seismic Responses

Full metadata record
DC Field Value Language
dc.contributor.authorHoang Dang-Vu-
dc.contributor.authorQuang Dang Nguyen-
dc.contributor.authorTaeChoong Chung-
dc.contributor.authorShin, Jiuk-
dc.contributor.authorLee, Kihak-
dc.date.accessioned2022-12-26T09:30:59Z-
dc.date.available2022-12-26T09:30:59Z-
dc.date.issued2022-10-
dc.identifier.issn1363-2469-
dc.identifier.issn1559-808X-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/2736-
dc.description.abstractThis research proposes a surrogate model to predict the seismic response of individual structural elements in structures whose inherent vertical and horizontal irregularities result in components with different seismic vulnerabilities. A frequency-based data-driven model was developed which predominantly uses the frequency spectrum of earthquakes as input data. The seismic responses of several structural components can be simultaneously generated as output using the proposed model. A comparison of structure fragility assessments obtained with a conventional approach, and the proposed Deep Learning-based approach, was conducted to verify the accuracy of the proposed method's prediction capability.-
dc.format.extent18-
dc.language영어-
dc.language.isoENG-
dc.publisherImperial College Press-
dc.titleFrequency-based Data-driven Surrogate Model for Efficient Prediction of Irregular Structure's Seismic Responses-
dc.typeArticle-
dc.publisher.location영국-
dc.identifier.doi10.1080/13632469.2021.1961940-
dc.identifier.scopusid2-s2.0-85113793234-
dc.identifier.wosid000687539200001-
dc.identifier.bibliographicCitationJournal of Earthquake Engineering, v.26, no.14, pp 7319 - 7336-
dc.citation.titleJournal of Earthquake Engineering-
dc.citation.volume26-
dc.citation.number14-
dc.citation.startPage7319-
dc.citation.endPage7336-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaGeology-
dc.relation.journalWebOfScienceCategoryEngineering, Civil-
dc.relation.journalWebOfScienceCategoryEngineering, Geological-
dc.relation.journalWebOfScienceCategoryGeosciences, Multidisciplinary-
dc.subject.keywordPlusSHEAR WALL BUILDINGS-
dc.subject.keywordPlusFRAGILITY ASSESSMENT-
dc.subject.keywordPlusNEURAL-NETWORKS-
dc.subject.keywordPlusOPTIMIZATION-
dc.subject.keywordPlusEVOLUTIONARY-
dc.subject.keywordPlusCAPACITY-
dc.subject.keywordPlusMOMENT-
dc.subject.keywordAuthorDeep neural network-
dc.subject.keywordAuthorfragility assessment-
dc.subject.keywordAuthorpiloti-type building-
dc.subject.keywordAuthorincremental dynamic analysis-
dc.subject.keywordAuthorfrequency-based model-
Files in This Item
There are no files associated with this item.
Appears in
Collections
공과대학 > School of Architectural Engineering > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Shin, Ji Uk photo

Shin, Ji Uk
공과대학 (건축공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE