Detailed Information

Cited 1 time in webofscience Cited 1 time in scopus
Metadata Downloads

An evaluation on PAH degradation and characteristics as media of PVA-derivative hydrogels prepared by using a CGA technique

Authors
Kwon, Sung HyunYoon, Mi-haeRhee, In HyoungCho, Daechul
Issue Date
Mar-2009
Publisher
KOREAN INSTITUTE CHEMICAL ENGINEERS
Keywords
PVA; Hydrogel; CGA Technique; Cell Adherence; Additive; Amino Acid; Organic Acid; Lipid; Saccharide; Microbial Immobilization
Citation
KOREAN JOURNAL OF CHEMICAL ENGINEERING, v.26, no.2, pp 403 - 410
Pages
8
Indexed
SCIE
SCOPUS
KCI
Journal Title
KOREAN JOURNAL OF CHEMICAL ENGINEERING
Volume
26
Number
2
Start Page
403
End Page
410
URI
https://scholarworks.gnu.ac.kr/handle/sw.gnu/26373
DOI
10.1007/s11814-009-0068-z
ISSN
0256-1115
1975-7220
Abstract
We manufactured PVA-derived hydrogels wth some crosslinkers by using a foam generation technique. Amino acids gels showed remarkably higher swelling ratios, probably because of the highly crosslinked network along with hydrogen bonds. Boric acid and starch would catalyze dehydration while structuring to result in much lower water content and accordingly high gel content, leading to less elastic, hard gels. Bulky materials such as ascorbic acid or starch produced, in general, large pores, and also nicotinamide, highly hydrophobic, was likely to enlarge its pore size, thus leading to reduced swelling. Hydrophilic (or hydrophobic), functional groups which are involved in the reaction or physical linkage, and bulkiness of crosslinkers were found to be more critical to the crosslinking structure and its density than molecular weights that seemed to be closely related to pore sizes. The average sizes of pores were 20 mu m for methionine, 10-15 mu m for citric acid, 50-70 mu m for L-ascorbic acid, 30-40 mu m for nicotinamide, and 70-80 mu m for starch. Also, amino acid and glucose gels were more elastic than the others. The elasticity of a gel was reasonably correlated with its water content or swelling ratio. On the other hand, L-ascorbic acid among glucose, methionine, citric acid and vitamins, imparted not only the most favorable physical properties and the greatest cell density but also the highest PAH degradation on its derivative gels. The higher biomass ensured the higher degradation rate. The maximum cell density was 0.267 mg/g-hydrogel and degradation rates and efficiencies ranged 0.013-0.007 mM/mg/day and 92-48%, respectively.
Files in This Item
There are no files associated with this item.
Appears in
Collections
해양과학대학 > Department of Marine Environmental Engineering > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE