Detailed Information

Cited 10 time in webofscience Cited 11 time in scopus
Metadata Downloads

Identification of potential DREB2C targets in Arabidopsis thaliana plants overexpressing DREB2C using proteomic analysis

Authors
Lee, KyungheeHan, Ki SooKwon, Young SangLee, Jung HanKim, Sun HoChung, Woo SikKim, YujungChun, Sung-SikKim, Hee KyuBae, Dong-Won
Issue Date
Oct-2009
Publisher
KOREAN SOC MOLECULAR & CELLULAR BIOLOGY
Keywords
Arabidopsis; dehydration responsive element; DREB2C; proteomic analysis; thermotolerance
Citation
MOLECULES AND CELLS, v.28, no.4, pp 383 - 388
Pages
6
Indexed
SCIE
SCOPUS
KCI
Journal Title
MOLECULES AND CELLS
Volume
28
Number
4
Start Page
383
End Page
388
URI
https://scholarworks.gnu.ac.kr/handle/sw.gnu/26159
DOI
10.1007/s10059-009-0154-4
ISSN
1016-8478
0219-1032
Abstract
The dehydration responsive element binding protein 2C (DREB2C) is a dehydration responsive element/C-repeat (DRE/CRT)-motif binding transcription factor that induced by mild heat stress. Previous experiments established that overexpression of DREB2C cDNA driven by the cauliflower mosaic virus 35S promoter (35S:DREB2C) resulted in increased heat tolerance in Arabidopsis. We first analyzed the proteomic profiles in wild-type and 35S:DREB2C plants at a normal temperature (22A degrees C), but could not detect any differences between the proteomes of wild-type and 35S:DREB2C plants. The transcript level of DREB2C in 35S:DREB2C plants after treatment with mild heat stress was increased more than two times compared with expression in 35S:DREB2C plants under unstressed condition. A proteomic approach was used to decipher the molecular mechanisms underlying thermotolerance in 35S:DREB2C Arabidopsis plants. Eleven protein spots were identified as being differentially regulated in 35S:DREB2C plants. Moreover, in silico motif analysis showed that peptidyl-prolyl isomerase ROC4, glutathione transferase 8, pyridoxal biosynthesis protein PDX1, and elongation factor Tu contained one or more DRE/CRT motifs. To our knowledge, this study is the first to identify possible targets of DREB2C transcription factors at the protein level. The proteomic results were in agreement with transcriptional data.
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Chung, Woo Sik photo

Chung, Woo Sik
대학원 (응용생명과학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE