Detailed Information

Cited 23 time in webofscience Cited 31 time in scopus
Metadata Downloads

Trajectory tracking controller design using neural networks for a tiltrotor unmanned aerial vehicle

Full metadata record
DC Field Value Language
dc.contributor.authorKim, B-M-
dc.contributor.authorKim, B. S.-
dc.contributor.authorKim, N-W-
dc.date.accessioned2022-12-27T05:03:15Z-
dc.date.available2022-12-27T05:03:15Z-
dc.date.issued2010-
dc.identifier.issn0954-4100-
dc.identifier.issn2041-3025-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/26047-
dc.description.abstractThis article presents a design of trajectory tracking controller for a tiltrotor unmanned aerial vehicle (UAV). The objective of this design is to control the tiltrotor aircraft with one fixed controller architecture for all flight modes, viz. helicopter mode, conversion mode, and aeroplane mode. The controller is implemented using two time-scale separations, and thus comprises an inner loop for attitude control and an outer loop for trajectory control. The dynamic model inversion (DMI) technique is applied to both the control loops such that the inner-loop and the outer-loop DMIs are driven using the angular equations of motion and the translational equations of motion, respectively. In addition, online adaptive neural networks are employed to compensate for the model inversion errors of the inner loop and the outer loop due to the lack of complete knowledge of tiltrotor aircraft dynamics. The pseudo-control hedging algorithm is adopted to reduce the instability problem caused by the time-delay of control loops, saturation, and rate limit of actuators. The trajectory tracking controller is evaluated using a sophisticated six-degree-of-freedom non-linear simulation programme with an approach and landing scenario including all flight modes of a smart UAV, a tiltrotor UAV.-
dc.format.extent16-
dc.language영어-
dc.language.isoENG-
dc.publisherSAGE PUBLICATIONS LTD-
dc.titleTrajectory tracking controller design using neural networks for a tiltrotor unmanned aerial vehicle-
dc.typeArticle-
dc.publisher.location영국-
dc.identifier.doi10.1243/09544100JAERO710-
dc.identifier.scopusid2-s2.0-77955293345-
dc.identifier.wosid000280565300003-
dc.identifier.bibliographicCitationPROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING, v.224, no.G8, pp 881 - 896-
dc.citation.titlePROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING-
dc.citation.volume224-
dc.citation.numberG8-
dc.citation.startPage881-
dc.citation.endPage896-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalWebOfScienceCategoryEngineering, Aerospace-
dc.relation.journalWebOfScienceCategoryEngineering, Mechanical-
dc.subject.keywordPlusFLIGHT CONTROL-
dc.subject.keywordPlusHELICOPTER-
dc.subject.keywordPlusIDENTIFICATION-
dc.subject.keywordPlusSYSTEMS-
dc.subject.keywordAuthordynamic model inversion-
dc.subject.keywordAuthorneural network-
dc.subject.keywordAuthorpseudo-control hedging-
dc.subject.keywordAuthortiltrotor-
dc.subject.keywordAuthorauto landing-
Files in This Item
There are no files associated with this item.
Appears in
Collections
공학계열 > 기계항공우주공학부 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE