Detailed Information

Cited 22 time in webofscience Cited 24 time in scopus
Metadata Downloads

Estimation of carbon storage based on individual tree detection in Pinus densiflora stands using a fusion of aerial photography and LiDAR data

Full metadata record
DC Field Value Language
dc.contributor.authorKim, S.-R.-
dc.contributor.authorKwak, D.-A.-
dc.contributor.authorLee, W.-K.-
dc.contributor.authorSon, Y.-
dc.contributor.authorBae, S.-W.-
dc.contributor.authorKim, C.-
dc.contributor.authorYoo, S.-
dc.date.accessioned2022-12-27T04:53:07Z-
dc.date.available2022-12-27T04:53:07Z-
dc.date.issued2010-07-
dc.identifier.issn1674-7305-
dc.identifier.issn1869-1889-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/25946-
dc.description.abstractThe objective of this study was to estimate the carbon storage capacity of Pinus densiflora stands using remotely sensed data by combining digital aerial photography with light detection and ranging (LiDAR) data. A digital canopy model (DCM), generated from the LiDAR data, was combined with aerial photography for segmenting crowns of individual trees. To eliminate errors in over and under-segmentation, the combined image was smoothed using a Gaussian filtering method. The processed image was then segmented into individual trees using a marker-controlled watershed segmentation method. After measuring the crown area from the segmented individual trees, the individual tree diameter at breast height (DBH) was estimated using a regression function developed from the relationship observed between the field-measured DBH and crown area. The above ground biomass of individual trees could be calculated by an image-derived DBH using a regression function developed by the Korea Forest Research Institute. The carbon storage, based on individual trees, was estimated by simple multiplication using the carbon conversion index (0.5), as suggested in guidelines from the Intergovernmental Panel on Climate Change. The mean carbon storage per individual tree was estimated and then compared with the field-measured value. This study suggested that the biomass and carbon storage in a large forest area can be effectively estimated using aerial photographs and LiDAR data. ? 2010 Science China Press and Springer-Verlag Berlin Heidelberg.-
dc.format.extent13-
dc.language영어-
dc.language.isoENG-
dc.publisherZhongguo Kexue Zazhishe/Science in China Press-
dc.titleEstimation of carbon storage based on individual tree detection in Pinus densiflora stands using a fusion of aerial photography and LiDAR data-
dc.typeArticle-
dc.publisher.location중국-
dc.identifier.doi10.1007/s11427-010-4017-1-
dc.identifier.scopusid2-s2.0-77955523108-
dc.identifier.wosid000280809600014-
dc.identifier.bibliographicCitationScience China Life Sciences, v.53, no.7, pp 885 - 897-
dc.citation.titleScience China Life Sciences-
dc.citation.volume53-
dc.citation.number7-
dc.citation.startPage885-
dc.citation.endPage897-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClasssci-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaLife Sciences & Biomedicine - Other Topics-
dc.relation.journalWebOfScienceCategoryBiology-
dc.subject.keywordPlusAIRBORNE LIDAR-
dc.subject.keywordPlusBIOMASS-
dc.subject.keywordPlusDELINEATION-
dc.subject.keywordPlusIMAGERY-
dc.subject.keywordPlusCROWNS-
dc.subject.keywordAuthoraerial photograph-
dc.subject.keywordAuthorcarbon storage-
dc.subject.keywordAuthorLiDAR-
dc.subject.keywordAuthormarker-control watershed segmentation-
dc.subject.keywordAuthorregion growing-
Files in This Item
There are no files associated with this item.
Appears in
Collections
농업생명과학대학 > 환경산림과학부 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE