Cited 164 time in
Caffeine-Mediated Inhibition of Calcium Release Channel Inositol 1,4,5-Trisphosphate Receptor Subtype 3 Blocks Glioblastoma Invasion and Extends Survival
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Kang, Sang Soo | - |
| dc.contributor.author | Han, Kyung-Seok | - |
| dc.contributor.author | Ku, Bo Mi | - |
| dc.contributor.author | Lee, Yeon Kyung | - |
| dc.contributor.author | Hong, Jinpyo | - |
| dc.contributor.author | Shin, Hye Young | - |
| dc.contributor.author | Almonte, Antoine G. | - |
| dc.contributor.author | Woo, Dong Ho | - |
| dc.contributor.author | Brat, Daniel J. | - |
| dc.contributor.author | Hwang, Eun Mi | - |
| dc.contributor.author | Yoo, Seung Hyun | - |
| dc.contributor.author | Chung, Chun Kee | - |
| dc.contributor.author | Park, Sung-Hye | - |
| dc.contributor.author | Paek, Sun Ha | - |
| dc.contributor.author | Roh, Eun Joo | - |
| dc.contributor.author | Lee, Sung Joong | - |
| dc.contributor.author | Park, Jae-Yong | - |
| dc.contributor.author | Traynelis, Stephen F. | - |
| dc.contributor.author | Lee, C. Justin | - |
| dc.date.accessioned | 2022-12-27T04:20:07Z | - |
| dc.date.available | 2022-12-27T04:20:07Z | - |
| dc.date.issued | 2010-02-01 | - |
| dc.identifier.issn | 0008-5472 | - |
| dc.identifier.issn | 1538-7445 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/25209 | - |
| dc.description.abstract | Calcium signaling is important in many signaling processes in cancer cell proliferation and motility including in deadly glioblastomas of the brain that aggressively invade neighboring tissue. We hypothesized that disturbing Ca2+ signaling pathways might decrease the invasive behavior of giloblastoma, extending survival. Evaluating a panel of small-molecule modulators of Ca2+ signaling, we identified caffeine as an inhibitor of glioblastoma cell motility. Caffeine, which is known to activate ryanodine receptors, paradoxically inhibits Ca2+ increase by inositol 1,4,5-trisphospate receptor subtype 3 (IP(3)R3), the expression of which is increased in glioblastoma cells. Consequently, by inhibiting IP(3)R3-mediated Ca2+ release, caffeine inhibited migration of glioblastoma cells in various in vitro assays. Consistent with these effects, caffeine greatly increased mean survival in a mouse xenograft model of glioblastoma. These findings suggest IP(3)R3 as a novel therapeutic target and identify caffeine as a possible adjunct therapy to slow invasive growth of glioblastoma. Cancer Res; 70(3); 1173-83. (C)2010 AACR. | - |
| dc.format.extent | 11 | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | AMER ASSOC CANCER RESEARCH | - |
| dc.title | Caffeine-Mediated Inhibition of Calcium Release Channel Inositol 1,4,5-Trisphosphate Receptor Subtype 3 Blocks Glioblastoma Invasion and Extends Survival | - |
| dc.type | Article | - |
| dc.publisher.location | 미국 | - |
| dc.identifier.doi | 10.1158/0008-5472.CAN-09-2886 | - |
| dc.identifier.scopusid | 2-s2.0-76249129621 | - |
| dc.identifier.wosid | 000278485600035 | - |
| dc.identifier.bibliographicCitation | CANCER RESEARCH, v.70, no.3, pp 1173 - 1183 | - |
| dc.citation.title | CANCER RESEARCH | - |
| dc.citation.volume | 70 | - |
| dc.citation.number | 3 | - |
| dc.citation.startPage | 1173 | - |
| dc.citation.endPage | 1183 | - |
| dc.type.docType | Article | - |
| dc.description.isOpenAccess | Y | - |
| dc.description.journalRegisteredClass | sci | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalResearchArea | Oncology | - |
| dc.relation.journalWebOfScienceCategory | Oncology | - |
| dc.subject.keywordPlus | GROWTH-FACTOR RECEPTOR | - |
| dc.subject.keywordPlus | UVB-INDUCED APOPTOSIS | - |
| dc.subject.keywordPlus | SKH-1 MICE | - |
| dc.subject.keywordPlus | MIGRATION | - |
| dc.subject.keywordPlus | SIGNALS | - |
| dc.subject.keywordPlus | PLASMA | - |
| dc.subject.keywordPlus | COMMON | - |
| dc.subject.keywordPlus | BRAIN | - |
| dc.subject.keywordPlus | CELLS | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
