Residue analysis of multi-class pesticides in watermelon by LC-MS/MS
- Authors
- Park, Semin; Lee, Sung Joong; Kim, Hae Gyeong; Jeong, Won Young; Shim, Jae-Han; Abd El-Aty, A. M.; Jeong, Sung Woo; Lee, Won Sup; Kim, Soo Taek; Shin, Sung Chul
- Issue Date
- Mar-2010
- Publisher
- WILEY-V C H VERLAG GMBH
- Keywords
- Citrullus vulgaris; Multiresidue; Pesticide; Statistical analysis; Watermelon
- Citation
- JOURNAL OF SEPARATION SCIENCE, v.33, no.4-5, pp 493 - 501
- Pages
- 9
- Indexed
- SCI
SCIE
SCOPUS
- Journal Title
- JOURNAL OF SEPARATION SCIENCE
- Volume
- 33
- Number
- 4-5
- Start Page
- 493
- End Page
- 501
- URI
- https://scholarworks.gnu.ac.kr/handle/sw.gnu/25183
- DOI
- 10.1002/jssc.200900644
- ISSN
- 1615-9306
1615-9314
- Abstract
- As watermelon is farmed primarily by protected and successive cultivation techniques, a number of pesticides are required for the control of pests and diseases. To evaluate the harmful effects of pesticides in watermelon and to guarantee consumers' safety, a rapid screening process for pesticides is required. A LC-MS/MS method was applied for the direct quantitation of 44 pesticide residues in watermelon. A Zorbax XDB-C-18 column was selected for analysis, with a mobile phase consisting of a gradient system of water and 5 mM methanolic ammonium formate. MS/MS experiments were performed in ESI positive ion and multiple reaction monitoring modes. The LOQs were in the range of 1-26 mu g/kg, thereby indicating good sensitivity. Most of the recoveries ranged between 70-131% with RSDs <= 20%. We suggested that the amount of pesticide residues such as pyroquilon (pyn), boscalid (bd), and dimethomorph (di) in amides (AM) and cinosulfuron (ci) in ureas (UR) may have been overestimated for the pesticides owing to increased alpha-error risk, whereas the amounts of pesticide residues, such as imibenconazole (ie) in the triazoles (TR) and fenpyroximate (fee) in the imidazoles (IM), may have been underestimated as the result of increased beta-error risk. The current method allowed for the rapid quantitation and identification of low pesticide levels in the watermelon samples. No pesticide residues were detected in any of the surveyed watermelons obtained from eight local markets in the Republic of Korea. Statistical analysis of the recoveries classified the 44 pesticides into nine groups and three overall categories.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - College of Medicine > Department of Medicine > Journal Articles

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.