Detailed Information

Cited 22 time in webofscience Cited 24 time in scopus
Metadata Downloads

Vascular endothelial growth factor stimulates osteoblastic differentiation of cultured human periosteal-derived cells expressing vascular endothelial growth factor receptors

Authors
Hah, Young-SoolJun, Jin-SuLee, Seong-GyunPark, Bong-WookKim, Deok RyongKim, Uk-KyuKim, Jong-RyoulByun, June-Ho
Issue Date
Feb-2011
Publisher
Kluwer Academic Publishers
Keywords
Periosteal-derived cells; Osteoblastic differentiation; Vascular endothelial growth factor; Vascular endothelial growth factor receptors
Citation
Molecular Biology Reports, v.38, no.2, pp 1443 - 1450
Pages
8
Indexed
SCI
SCIE
SCOPUS
Journal Title
Molecular Biology Reports
Volume
38
Number
2
Start Page
1443
End Page
1450
URI
https://scholarworks.gnu.ac.kr/handle/sw.gnu/23857
DOI
10.1007/s11033-010-0249-1
ISSN
0301-4851
1573-4978
Abstract
Angiogenesis plays an important role in bone development and postnatal bone fracture repair. Vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptors (VEGFRs) are primarily involved in angiogenesis. This study investigated the expression of VEGF isoforms, VEGFR-1, and VEGFR-2 during the osteoblastic differentiation of cultured human periosteal-derived cells. In addition, the effect of exogenous VEGF on the osteoblastic differentiation of cultured human periosteal-derived cells was also examined. The expression of the VEGF isoforms (VEGF(121), VEGF(165), VEGF(189), and VEGF(206)), VEGFR-1, and VEGFR-2 was observed in the periosteal-derived cells. Administration of KRN633, a VEGFR-1 and VEGFR-2 inhibitor, decreased the alkaline phosphatase (ALP) activity during the osteoblastic differentiation of cultured human periosteal-derived cells. However, the administration of VEGFR2 Kinase Inhibitor IV, a VEGFR-2 inhibitor, did not affect the ALP activity. The addition of recombinant human VEGF(165) elevated the ALP activity and increased the calcium content in the periosteal-derived cells. Treating the periosteal-derived cells with recombinant human VEGF(165) resulted in an increase in Runx2 transactivation in the periosteal-derived cells. These results suggest that exogenous VEGF stimulates the osteoblastic differentiation of cultured human periosteal-derived cells and VEGF might act as an autocrine growth factor for the osteoblastic differentiation of cultured human periosteal-derived cells.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Medicine > Department of Medicine > Journal Articles
의학계열 > 의학과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Altmetrics

Total Views & Downloads

BROWSE