Cited 46 time in
Analysis of Arabidopsis transcription factor families revealed extensive capacity for cell-to-cell movement as well as discrete trafficking patterns
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Rim, Yeonggil | - |
| dc.contributor.author | Huang, Lijun | - |
| dc.contributor.author | Chu, Hyosub | - |
| dc.contributor.author | Han, Xiao | - |
| dc.contributor.author | Cho, Won Kyong | - |
| dc.contributor.author | Jeon, Che Ok | - |
| dc.contributor.author | Kim, Hye Jin | - |
| dc.contributor.author | Hong, Jong-Chan | - |
| dc.contributor.author | Lucas, William J. | - |
| dc.contributor.author | Kim, Jae-Yean | - |
| dc.date.accessioned | 2022-12-27T02:51:06Z | - |
| dc.date.available | 2022-12-27T02:51:06Z | - |
| dc.date.issued | 2011-12 | - |
| dc.identifier.issn | 1016-8478 | - |
| dc.identifier.issn | 0219-1032 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/23458 | - |
| dc.description.abstract | In plants, cell-to-cell communication is pivotal for the orchestration of cell fate determination, organ development, and the integration of whole plant physiology. One of the strategies for intercellular communication uses symplasmic communication channels, called plasmodesmata (PD). These PD establish unique cytoplasmic channels for the intercellular exchange not only of metabolites and small signaling molecules, but also of regulatory proteins and RNAs to allow for local orchestration of development and physiology. A number of non-cell-autonomous transcription factors (NCATFs) have been shown to function in the coordination of specific regulatory networks. To further explore the potential of such NCATFs, a genome-wide screen was performed on the transcription factor (TF) families in Arabidopsis. We here report that, among the 76 TFs examined, 22 were shown to move beyond their sites of transcription in the root apex; these NCATFs belonged to 17 TF families, including homeobox, GRAS, and MYB. Expression studies performed on variously-sized mCherry constructs identified a range of PD size exclusion limits within tissues of the root. In addition, our studies showed that actual protein level was an important factor controlling the range of TF intercellular movement. Interestingly, our studies on CAPRICE movement revealed tissue-specificity with respect to the mode of intercellular trafficking. These findings are discussed with respect to the regulation between cell-autonomous or non-cell-autonomous action. | - |
| dc.format.extent | 8 | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | 한국분자세포생물학회 | - |
| dc.title | Analysis of Arabidopsis transcription factor families revealed extensive capacity for cell-to-cell movement as well as discrete trafficking patterns | - |
| dc.type | Article | - |
| dc.publisher.location | 대한민국 | - |
| dc.identifier.doi | 10.1007/s10059-011-0135-2 | - |
| dc.identifier.scopusid | 2-s2.0-84859893563 | - |
| dc.identifier.wosid | 000298660500003 | - |
| dc.identifier.bibliographicCitation | Molecules and Cells, v.32, no.6, pp 519 - 526 | - |
| dc.citation.title | Molecules and Cells | - |
| dc.citation.volume | 32 | - |
| dc.citation.number | 6 | - |
| dc.citation.startPage | 519 | - |
| dc.citation.endPage | 526 | - |
| dc.type.docType | Article | - |
| dc.identifier.kciid | ART001609940 | - |
| dc.description.isOpenAccess | N | - |
| dc.description.journalRegisteredClass | sci | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.description.journalRegisteredClass | kci | - |
| dc.relation.journalResearchArea | Biochemistry & Molecular Biology | - |
| dc.relation.journalResearchArea | Cell Biology | - |
| dc.relation.journalWebOfScienceCategory | Biochemistry & Molecular Biology | - |
| dc.relation.journalWebOfScienceCategory | Cell Biology | - |
| dc.subject.keywordPlus | MESSENGER-RNA | - |
| dc.subject.keywordPlus | INTERCELLULAR TRAFFICKING | - |
| dc.subject.keywordPlus | PLASMODESMATA | - |
| dc.subject.keywordPlus | PROTEIN | - |
| dc.subject.keywordPlus | TRANSPORT | - |
| dc.subject.keywordPlus | HOMEODOMAIN | - |
| dc.subject.keywordPlus | EXPRESSION | - |
| dc.subject.keywordPlus | GENE | - |
| dc.subject.keywordPlus | LOCALIZATION | - |
| dc.subject.keywordPlus | MICRORNA | - |
| dc.subject.keywordAuthor | cell-to-cell communication | - |
| dc.subject.keywordAuthor | intercellular protein trafficking | - |
| dc.subject.keywordAuthor | non-cell-autonomous transcription factor (NCATF) | - |
| dc.subject.keywordAuthor | plasmodesmata (PD) | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
