Cited 4 time in
HERMITE INTERPOLATION USING PH CURVES WITH UNDETERMINED JUNCTION POINTS
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Kong, Jae Hoon | - |
| dc.contributor.author | Jeong, Seung Pil | - |
| dc.contributor.author | Kim, Gwang Il | - |
| dc.date.accessioned | 2022-12-27T02:02:23Z | - |
| dc.date.available | 2022-12-27T02:02:23Z | - |
| dc.date.issued | 2012-01 | - |
| dc.identifier.issn | 1015-8634 | - |
| dc.identifier.issn | 2234-3016 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/22428 | - |
| dc.description.abstract | Representing planar Pythagorean hodograph (PH) curves by the complex roots of their hodographs, we standardize Farouki's double cubic method to become the undetermined junction point (UJP) method, and then prove the generic existence of solutions for general C-1 Hermite interpolation problems. We also extend the UJP method to solve C-2 Hermite interpolation problems with multiple PH cubics, and also prove the generic existence of solutions which consist of triple PH cubics with C-1 junction points. Further generalizing the UJP method, we go on to solve C-2 Hermite interpolation problems using two PH quintics with a C-1 junction point, and we also show the possibility of applying the modified UJP method to G(2)[C-1] Hermit interpolation. | - |
| dc.format.extent | 21 | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | KOREAN MATHEMATICAL SOC | - |
| dc.title | HERMITE INTERPOLATION USING PH CURVES WITH UNDETERMINED JUNCTION POINTS | - |
| dc.type | Article | - |
| dc.publisher.location | 대한민국 | - |
| dc.identifier.doi | 10.4134/BKMS.2012.49.1.175 | - |
| dc.identifier.scopusid | 2-s2.0-84856915144 | - |
| dc.identifier.wosid | 000301009800017 | - |
| dc.identifier.bibliographicCitation | BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, v.49, no.1, pp 175 - 195 | - |
| dc.citation.title | BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY | - |
| dc.citation.volume | 49 | - |
| dc.citation.number | 1 | - |
| dc.citation.startPage | 175 | - |
| dc.citation.endPage | 195 | - |
| dc.type.docType | Article | - |
| dc.identifier.kciid | ART001630481 | - |
| dc.description.isOpenAccess | Y | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.description.journalRegisteredClass | kci | - |
| dc.relation.journalResearchArea | Mathematics | - |
| dc.relation.journalWebOfScienceCategory | Mathematics | - |
| dc.subject.keywordPlus | PYTHAGOREAN-HODOGRAPH-CURVES | - |
| dc.subject.keywordPlus | TRANSITION | - |
| dc.subject.keywordPlus | CIRCLES | - |
| dc.subject.keywordPlus | DESIGN | - |
| dc.subject.keywordAuthor | Pythagorean hodograph (PH) curve | - |
| dc.subject.keywordAuthor | complex representation | - |
| dc.subject.keywordAuthor | C-1(C-2) Hermite interpolation | - |
| dc.subject.keywordAuthor | G(2)[C-1] Hermite interpolation | - |
| dc.subject.keywordAuthor | undetermined junction point (UJP) method | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
