Detailed Information

Cited 1 time in webofscience Cited 3 time in scopus
Metadata Downloads

Edge detection based on morphological amoebas

Full metadata record
DC Field Value Language
dc.contributor.authorLee, W. Y.-
dc.contributor.authorKim, Y. W.-
dc.contributor.authorKim, S. Y.-
dc.contributor.authorLim, J. Y.-
dc.contributor.authorLim, D. H.-
dc.date.accessioned2022-12-27T01:46:25Z-
dc.date.available2022-12-27T01:46:25Z-
dc.date.issued2012-06-
dc.identifier.issn1368-2199-
dc.identifier.issn1743-131X-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/22147-
dc.description.abstractDetecting the edges of objects within images is critical for quality image processing. We present an edge-detection technique that uses morphological amoebas that adjust their shape based on variation in image contours. We evaluate the method both quantitatively and qualitatively for edge detection of images, and compare it to classic morphological methods. Our amoeba-based edge-detection system performed better than the classic edge detectors.-
dc.format.extent12-
dc.language영어-
dc.language.isoENG-
dc.publisherTAYLOR & FRANCIS LTD-
dc.titleEdge detection based on morphological amoebas-
dc.typeArticle-
dc.publisher.location영국-
dc.identifier.doi10.1179/1743131X11Y.0000000013-
dc.identifier.scopusid2-s2.0-84861937857-
dc.identifier.wosid000304867100005-
dc.identifier.bibliographicCitationIMAGING SCIENCE JOURNAL, v.60, no.3, pp 172 - 183-
dc.citation.titleIMAGING SCIENCE JOURNAL-
dc.citation.volume60-
dc.citation.number3-
dc.citation.startPage172-
dc.citation.endPage183-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClasssci-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaImaging Science & Photographic Technology-
dc.relation.journalWebOfScienceCategoryImaging Science & Photographic Technology-
dc.subject.keywordPlusMATHEMATICAL MORPHOLOGY-
dc.subject.keywordPlusNOISY IMAGES-
dc.subject.keywordPlusPART-I-
dc.subject.keywordPlusFILTERS-
dc.subject.keywordPlusTESTS-
dc.subject.keywordAuthoredge detection-
dc.subject.keywordAuthormorphological amoeba-
dc.subject.keywordAuthorstructuring element-
Files in This Item
There are no files associated with this item.
Appears in
Collections
자연과학대학 > Dept. of Information and Statistics > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE