Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

슈퍼픽셀 DBSCAN 군집 알고리즘을 이용한 용융아연도금 강판의 부식이미지 분석

Full metadata record
DC Field Value Language
dc.contributor.author김범수-
dc.contributor.author김연원-
dc.contributor.author이경황-
dc.contributor.author양정현-
dc.date.accessioned2022-12-26T08:01:04Z-
dc.date.available2022-12-26T08:01:04Z-
dc.date.issued2022-06-
dc.identifier.issn1225-8024-
dc.identifier.issn2288-8403-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/2186-
dc.description.abstractHot-dip galvanized steel(GI) is widely used throughout the industry as a corrosion resistance material. Corrosion of steel is a common phenomenon that results in the gradual degradation under variousenvironmental conditions. Corrosion monitoring is to track the degradation progress for a long time. Corrosion on steel plate appears as discoloration and any irregularities on the surface. This studydeveloped a quantitative evaluation method of the rust formed on GI steel plate using a superpixelbasedDBSCAN clustering method and k-means clustering from the corroded area in a given image. The superpixel-based DBSCAN clustering method decrease computational costs, reaching automaticsegmentation. The image color of the rusty surface was analyzed quantitatively based on HSV(Hue,Saturation, Value) color space. In addition, two segmentation methods are compared for the particularspatial region using their histograms.-
dc.format.extent9-
dc.language한국어-
dc.language.isoKOR-
dc.publisher한국표면공학회-
dc.title슈퍼픽셀 DBSCAN 군집 알고리즘을 이용한 용융아연도금 강판의 부식이미지 분석-
dc.title.alternativeCorrosion image analysis on galvanized steel by using superpixel DBSCAN clustering algorithm-
dc.typeArticle-
dc.publisher.location대한민국-
dc.identifier.doi10.5695/JSSE.2022.55.3.164-
dc.identifier.bibliographicCitation한국표면공학회지, v.55, no.3, pp 164 - 172-
dc.citation.title한국표면공학회지-
dc.citation.volume55-
dc.citation.number3-
dc.citation.startPage164-
dc.citation.endPage172-
dc.identifier.kciidART002862528-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClasskci-
dc.subject.keywordAuthorCorrosion-
dc.subject.keywordAuthorSuperpixel-
dc.subject.keywordAuthorDBSCAN-
dc.subject.keywordAuthork-means clustering-
dc.subject.keywordAuthorHSV color space.-
Files in This Item
There are no files associated with this item.
Appears in
Collections
해양과학대학 > 기계시스템공학과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Yang, Jeong Hyeon photo

Yang, Jeong Hyeon
해양과학대학 (기계시스템공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE