Detailed Information

Cited 177 time in webofscience Cited 181 time in scopus
Metadata Downloads

Coordination polymer gels with important environmental and biological applications

Full metadata record
DC Field Value Language
dc.contributor.authorJung, Jong Hwa-
dc.contributor.authorLee, Ji Ha-
dc.contributor.authorSilverman, Julian R.-
dc.contributor.authorJohn, George-
dc.date.accessioned2022-12-27T01:32:21Z-
dc.date.available2022-12-27T01:32:21Z-
dc.date.issued2013-
dc.identifier.issn0306-0012-
dc.identifier.issn1460-4744-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/21796-
dc.description.abstractCoordination Polymer Gels (CPGs) constitute a subset of solid-like metal ion and bridging organic ligand structures (similar to metal-organic frameworks) that form multi-dimensional networks through a trapped solvent as a result of non-covalent interactions. While physical properties of these gels are similar to conventional high molecular weight organic polymer gels, coordination polymer gel systems are often fully reversible and can be assembled and disassembled in the presence of additional energy (heat, sonication, shaking) to give a solution of solvated gelators. Compared to gels resulting from purely organic self-assembled low molecular weight gelators, metal ions incorporated into the fibrilar networks spanning the bulk solvent can impart CPGs with added functionalities. The solid/liquid nature of the gels allows for species to migrate through the gel system and interact with metals, ligands, and the solvent. Chemosensing, catalysis, fluorescence, and drug-delivery applications are some of the many potential uses for these dynamic systems, taking advantage of the metal ion's coordination, the organic polydentate ligand's orientation and functionality, or a combination of these properties. By fine tuning these systems through metal ion and ligand selection and by directing self-assembly with external stimuli the rational synthesis of practical systems can be envisaged.-
dc.format.extent13-
dc.language영어-
dc.language.isoENG-
dc.publisherROYAL SOC CHEMISTRY-
dc.titleCoordination polymer gels with important environmental and biological applications-
dc.typeArticle-
dc.publisher.location영국-
dc.identifier.doi10.1039/c2cs35407a-
dc.identifier.scopusid2-s2.0-84872730586-
dc.identifier.wosid000313596300006-
dc.identifier.bibliographicCitationCHEMICAL SOCIETY REVIEWS, v.42, no.3, pp 924 - 936-
dc.citation.titleCHEMICAL SOCIETY REVIEWS-
dc.citation.volume42-
dc.citation.number3-
dc.citation.startPage924-
dc.citation.endPage936-
dc.type.docTypeReview-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClasssci-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.subject.keywordPlusGELATORS-
Files in This Item
There are no files associated with this item.
Appears in
Collections
자연과학대학 > 화학과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Jung, Jong Hwa photo

Jung, Jong Hwa
자연과학대학 (화학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE