Cited 81 time in
Thioredoxin Reductase Type C (NTRC) Orchestrates Enhanced Thermotolerance to Arabidopsis by Its Redox-Dependent Holdase Chaperone Function
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Chae, Ho Byoung | - |
| dc.contributor.author | Moon, Jeong Chan | - |
| dc.contributor.author | Shin, Mi Rim | - |
| dc.contributor.author | Chi, Yong Hun | - |
| dc.contributor.author | Jung, Young Jun | - |
| dc.contributor.author | Lee, Sun Yong | - |
| dc.contributor.author | Nawkar, Ganesh M. | - |
| dc.contributor.author | Jung, Hyun Suk | - |
| dc.contributor.author | Hyun, Jae Kyung | - |
| dc.contributor.author | Kim, Woe Yeon | - |
| dc.contributor.author | Kang, Chang Ho | - |
| dc.contributor.author | Yun, Dae-Jin | - |
| dc.contributor.author | Lee, Kyun Oh | - |
| dc.contributor.author | Lee, Sang Yeol | - |
| dc.date.accessioned | 2022-12-27T00:36:42Z | - |
| dc.date.available | 2022-12-27T00:36:42Z | - |
| dc.date.issued | 2013-03 | - |
| dc.identifier.issn | 1674-2052 | - |
| dc.identifier.issn | 1752-9867 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/20791 | - |
| dc.description.abstract | Genevestigator analysis has indicated heat shock induction of transcripts for NADPH-thioredoxin reductase, type C (NTRC) in the light. Here we show overexpression of NTRC in Arabidopsis (NTRCE) resulting in enhanced tolerance to heat shock, whereas NTRC knockout mutant plants (ntrc1) exhibit a temperature sensitive phenotype. To investigate the underlying mechanism of this phenotype, we analyzed the proteins biochemical properties and protein structure. NTRC assembles into homopolymeric structures of varying complexity with functions as a disulfide reductase, a foldase chaperone, and as a holdase chaperone. The multiple functions of NTRC are closely correlated with protein structure. Complexes of higher molecular weight (HMW) showed stronger activity as a holdase chaperone, while low molecular weight (LMW) species exhibited weaker holdase chaperone activity but stronger disulfide reductase and foldase chaperone activities. Heat shock converted LMW proteins into HMW complexes. Mutations of the two active site Cys residues of NTRC into Ser (C217/454S-NTRC) led to a complete inactivation of its disulfide reductase and foldase chaperone functions, but conferred only a slight decrease in its holdase chaperone function. The overexpression of the mutated C217/454S-NTRC provided Arabidopsis with a similar degree of thermotolerance compared with that of NTRCE plants. However, after prolonged incubation under heat shock, NTRCE plants tolerated the stress to a higher degree than C217/454S-NTRCE plants. The results suggest that the heat shock-mediated holdase chaperone function of NTRC is responsible for the increased thermotolerance of Arabidopsis and the activity is significantly supported by NADPH. | - |
| dc.format.extent | 14 | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | CELL PRESS | - |
| dc.title | Thioredoxin Reductase Type C (NTRC) Orchestrates Enhanced Thermotolerance to Arabidopsis by Its Redox-Dependent Holdase Chaperone Function | - |
| dc.type | Article | - |
| dc.publisher.location | 미국 | - |
| dc.identifier.doi | 10.1093/mp/sss105 | - |
| dc.identifier.scopusid | 2-s2.0-84875588403 | - |
| dc.identifier.wosid | 000317006000010 | - |
| dc.identifier.bibliographicCitation | MOLECULAR PLANT, v.6, no.2, pp 323 - 336 | - |
| dc.citation.title | MOLECULAR PLANT | - |
| dc.citation.volume | 6 | - |
| dc.citation.number | 2 | - |
| dc.citation.startPage | 323 | - |
| dc.citation.endPage | 336 | - |
| dc.type.docType | Article | - |
| dc.description.isOpenAccess | Y | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalResearchArea | Biochemistry & Molecular Biology | - |
| dc.relation.journalResearchArea | Plant Sciences | - |
| dc.relation.journalWebOfScienceCategory | Biochemistry & Molecular Biology | - |
| dc.relation.journalWebOfScienceCategory | Plant Sciences | - |
| dc.subject.keywordPlus | HEAT-SHOCK-PROTEIN | - |
| dc.subject.keywordPlus | 2-CYS PEROXIREDOXIN | - |
| dc.subject.keywordPlus | ESCHERICHIA-COLI | - |
| dc.subject.keywordPlus | GENE | - |
| dc.subject.keywordPlus | SYSTEM | - |
| dc.subject.keywordPlus | STRESS | - |
| dc.subject.keywordPlus | CHLOROPLAST | - |
| dc.subject.keywordPlus | PEROXIDASE | - |
| dc.subject.keywordPlus | CRYSTALLIN | - |
| dc.subject.keywordPlus | TOLERANCE | - |
| dc.subject.keywordAuthor | NADPH-thioredoxin reductase type C (NTRC) | - |
| dc.subject.keywordAuthor | oligomeric complexes | - |
| dc.subject.keywordAuthor | disulfide reductase | - |
| dc.subject.keywordAuthor | foldase and holdase chaperone functions | - |
| dc.subject.keywordAuthor | redox | - |
| dc.subject.keywordAuthor | thermotolerance | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
