Detailed Information

Cited 126 time in webofscience Cited 137 time in scopus
Metadata Downloads

Data-based analysis of bivariate copula tail dependence for drought duration and severity

Authors
Lee, T.Modarres, R.Ouarda, T. B. M. J.
Issue Date
15-May-2013
Publisher
WILEY
Keywords
bivariate frequency analysis; Clayton copula; distribution tail; drought; joint distribution
Citation
HYDROLOGICAL PROCESSES, v.27, no.10, pp 1454 - 1463
Pages
10
Indexed
SCI
SCIE
SCOPUS
Journal Title
HYDROLOGICAL PROCESSES
Volume
27
Number
10
Start Page
1454
End Page
1463
URI
https://scholarworks.gnu.ac.kr/handle/sw.gnu/20661
DOI
10.1002/hyp.9233
ISSN
0885-6087
1099-1085
Abstract
In recent decades, copula functions have been applied in bivariate drought duration and severity frequency analysis. Among several potential copulas, Clayton has been mostly used in drought analysis. In this research, we studied the influence of the tail shape of various copula functions (i.e. Gumbel, Frank, Clayton and Gaussian) on drought bivariate frequency analysis. The appropriateness of Clayton copula for the characterization of drought characteristics is also investigated. Drought data are extracted from standardized precipitation index time series for four stations in Canada (La Tuque and Grande Prairie) and Iran (Anzali and Zahedan). Both duration and severity data sets are positively skewed. Different marginal distributions were first fitted to drought duration and severity data. The gamma and exponential distributions were selected for drought duration and severity, respectively, according to the positive skewness and KolmogorovSmirnov test. The results of copula modelling show that the Clayton copula function is not an appropriate choice for the used data sets in the current study and does not give more drought risk information than an independent model for which the duration and severity dependence is not significant. The reason is that the dependence of two variables in the upper tail of Clayton copula is very weak and similar to the independent case, whereas the observed data in the transformed domain of cumulative density function show high association in the upper tail. Instead, the Frank and Gumbel copula functions show better performance than Clayton function for drought bivariate frequency analysis. Copyright (c) 2012 John Wiley & Sons, Ltd.
Files in This Item
There are no files associated with this item.
Appears in
Collections
공과대학 > Department of Civil Engineering > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Tae Sam photo

Lee, Tae Sam
공과대학 (토목공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE