Detailed Information

Cited 83 time in webofscience Cited 119 time in scopus
Metadata Downloads

Automatic Detection and Recognition of Pig Wasting Diseases Using Sound Data in Audio Surveillance Systems

Full metadata record
DC Field Value Language
dc.contributor.authorChung, Yongwha-
dc.contributor.authorOh, Seunggeun-
dc.contributor.authorLee, Jonguk-
dc.contributor.authorPark, Daihee-
dc.contributor.authorChang, Hong-Hee-
dc.contributor.authorKim, Suk-
dc.date.accessioned2022-12-27T00:20:53Z-
dc.date.available2022-12-27T00:20:53Z-
dc.date.issued2013-10-
dc.identifier.issn1424-8220-
dc.identifier.issn1424-3210-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/20454-
dc.description.abstractAutomatic detection of pig wasting diseases is an important issue in the management of group-housed pigs. Further, respiratory diseases are one of the main causes of mortality among pigs and loss of productivity in intensive pig farming. In this study, we propose an efficient data mining solution for the detection and recognition of pig wasting diseases using sound data in audio surveillance systems. In this method, we extract the Mel Frequency Cepstrum Coefficients (MFCC) from sound data with an automatic pig sound acquisition process, and use a hierarchical two-level structure: the Support Vector Data Description (SVDD) and the Sparse Representation Classifier (SRC) as an early anomaly detector and a respiratory disease classifier, respectively. Our experimental results show that this new method can be used to detect pig wasting diseases both economically (even a cheap microphone can be used) and accurately (94% detection and 91% classification accuracy), either as a standalone solution or to complement known methods to obtain a more accurate solution.-
dc.format.extent14-
dc.language영어-
dc.language.isoENG-
dc.publisherMDPI-
dc.titleAutomatic Detection and Recognition of Pig Wasting Diseases Using Sound Data in Audio Surveillance Systems-
dc.typeArticle-
dc.publisher.location스위스-
dc.identifier.doi10.3390/s131012929-
dc.identifier.scopusid2-s2.0-84884885714-
dc.identifier.wosid000328625300009-
dc.identifier.bibliographicCitationSENSORS, v.13, no.10, pp 12929 - 12942-
dc.citation.titleSENSORS-
dc.citation.volume13-
dc.citation.number10-
dc.citation.startPage12929-
dc.citation.endPage12942-
dc.type.docTypeArticle-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaInstruments & Instrumentation-
dc.relation.journalWebOfScienceCategoryChemistry, Analytical-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryInstruments & Instrumentation-
dc.subject.keywordPlusCOUGH-
dc.subject.keywordPlusIDENTIFICATION-
dc.subject.keywordPlusVOCALIZATION-
dc.subject.keywordPlusANIMALS-
dc.subject.keywordAuthorpig wasting diseases-
dc.subject.keywordAuthorsound data-
dc.subject.keywordAuthormel frequency cepstrum coefficient-
dc.subject.keywordAuthorsupport vector data description-
dc.subject.keywordAuthorsparse representation classifier-
Files in This Item
There are no files associated with this item.
Appears in
Collections
수의과대학 > Department of Veterinary Medicine > Journal Articles
농업생명과학대학 > 축산과학부 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Chang, Hong Hee photo

Chang, Hong Hee
농업생명과학대학 (축산과학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE