Cited 0 time in
회전기계 결함신호 진단을 위한 신호처리 기술 개발
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | 안병현 | - |
| dc.contributor.author | 김용휘 | - |
| dc.contributor.author | 이종명 | - |
| dc.contributor.author | 이정훈 | - |
| dc.contributor.author | 최병근 | - |
| dc.date.accessioned | 2022-12-26T23:48:26Z | - |
| dc.date.available | 2022-12-26T23:48:26Z | - |
| dc.date.issued | 2014 | - |
| dc.identifier.issn | 1598-2785 | - |
| dc.identifier.issn | 2287-5476 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/19800 | - |
| dc.description.abstract | Acoustic Emission technique is widely applied to develop the early fault detection system, and the problem about a signal processing method for AE signal is mainly focused on. In the signal processing method, envelope analysis is a useful method to evaluate the bearing problems and wavelet transform is a powerful method to detect faults occurred on rotating machinery. However, exact method for AE signal is not developed yet for the rotating machinery diagnosis. Therefore, in this paper two methods which are processed by Hilbert transform and DET for feature extraction. In addition, we evaluate the classification performance with varying the parameter from 2 to 15 for feature selection DET, 0.01 to 1.0 for the RBF kernel function of SVR, and the proposed algorithm achieved 94% classification of averaged accuracy with the parameter of the RBF 0.08, 12 feature selection. | - |
| dc.format.extent | 7 | - |
| dc.language | 한국어 | - |
| dc.language.iso | KOR | - |
| dc.publisher | 한국소음진동공학회 | - |
| dc.title | 회전기계 결함신호 진단을 위한 신호처리 기술 개발 | - |
| dc.title.alternative | Signal Processing Technology for Rotating Machinery Fault Signal Diagnosis | - |
| dc.type | Article | - |
| dc.publisher.location | 대한민국 | - |
| dc.identifier.doi | 10.5050/KSNVE.2014.24.7.555 | - |
| dc.identifier.bibliographicCitation | 한국소음진동공학회논문집, v.24, no.7, pp 555 - 561 | - |
| dc.citation.title | 한국소음진동공학회논문집 | - |
| dc.citation.volume | 24 | - |
| dc.citation.number | 7 | - |
| dc.citation.startPage | 555 | - |
| dc.citation.endPage | 561 | - |
| dc.identifier.kciid | ART001896253 | - |
| dc.description.isOpenAccess | Y | - |
| dc.description.journalRegisteredClass | kci | - |
| dc.subject.keywordAuthor | Acoustic Emission | - |
| dc.subject.keywordAuthor | Signal Processing | - |
| dc.subject.keywordAuthor | Hilbert Transform | - |
| dc.subject.keywordAuthor | Fault Classification | - |
| dc.subject.keywordAuthor | Feature Selection | - |
| dc.subject.keywordAuthor | Acoustic Emission(음향 방출) | - |
| dc.subject.keywordAuthor | Signal Processing(신호처리) | - |
| dc.subject.keywordAuthor | Hilbert Transform(힐버트 변환) | - |
| dc.subject.keywordAuthor | Fault Classification(고장 분류) | - |
| dc.subject.keywordAuthor | Feature Selection(특징 선택) | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
