Detailed Information

Cited 9 time in webofscience Cited 10 time in scopus
Metadata Downloads

Effect of Applied Potential on Fatigue Crack Propagation Behavior of API X80 Steel in Seawater

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Youngju-
dc.contributor.authorKwon, Jaeki-
dc.contributor.authorJeong, Daeho-
dc.contributor.authorWoo, Namsub-
dc.contributor.authorGoto, Masahiro-
dc.contributor.authorKim, Sangshik-
dc.date.accessioned2022-12-26T23:02:34Z-
dc.date.available2022-12-26T23:02:34Z-
dc.date.issued2014-09-
dc.identifier.issn1598-9623-
dc.identifier.issn2005-4149-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/18812-
dc.description.abstractIn the present study, the fatigue crack propagation (FCP) tests were conducted on X80 steel in air and artificial seawater (ASW) under various applied potentials to establish optimum and safe working limits of cathodic protection (CP). The slow strain rate test (SSRT) was also conducted on the X80 BM specimens in ASW under CP potential to identify the susceptibility of hydrogen affecting the FCP behavior. The CP potential of -850 and -1,050 mV(SCE) suppressed the environmental effect of seawater on the FCP behavior of X80 BM and WM specimens, showing almost identical da/dN-Delta K curves for both air and ASW environments. The SSRT in ASW under CP potential of -1,050 mV(SCE) suggested that the X80 BM specimen steel is susceptible to hydrogen embrittlement, but the effect of hydrogen was believed to be marginal in affecting the FCP behavior of the X80 specimens at a loading frequency of 10 Hz. The FCP behavior of high strength X80 steel is discussed based on the fractographic observation to understand the FCP mechanism in seawater under various CP potentials.-
dc.format.extent8-
dc.language영어-
dc.language.isoENG-
dc.publisherKOREAN INST METALS MATERIALS-
dc.titleEffect of Applied Potential on Fatigue Crack Propagation Behavior of API X80 Steel in Seawater-
dc.typeArticle-
dc.publisher.location대한민국-
dc.identifier.doi10.1007/s12540-014-5009-7-
dc.identifier.scopusid2-s2.0-84919908991-
dc.identifier.wosid000341283700007-
dc.identifier.bibliographicCitationMETALS AND MATERIALS INTERNATIONAL, v.20, no.5, pp 851 - 858-
dc.citation.titleMETALS AND MATERIALS INTERNATIONAL-
dc.citation.volume20-
dc.citation.number5-
dc.citation.startPage851-
dc.citation.endPage858-
dc.type.docTypeArticle-
dc.identifier.kciidART001907831-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClasssci-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.description.journalRegisteredClasskci-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.subject.keywordPlusS-N FATIGUE-
dc.subject.keywordPlusSTRESS-CORROSION CRACKING-
dc.subject.keywordPlusGROWTH-BEHAVIOR-
dc.subject.keywordPlusPIPELINE STEELS-
dc.subject.keywordPlusNACL-
dc.subject.keywordPlusSUSCEPTIBILITY-
dc.subject.keywordPlusALLOY-
dc.subject.keywordAuthoralloys-
dc.subject.keywordAuthorthermomechanical processing-
dc.subject.keywordAuthorfatigue-
dc.subject.keywordAuthorscanning electron microscopy-
dc.subject.keywordAuthorX80 steel-
Files in This Item
There are no files associated with this item.
Appears in
Collections
공학계열 > Dept.of Materials Engineering and Convergence Technology > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Sang Shik photo

Kim, Sang Shik
대학원 (나노신소재융합공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE