Detailed Information

Cited 52 time in webofscience Cited 53 time in scopus
Metadata Downloads

Design of medium carbon steels by computational intelligence techniques

Full metadata record
DC Field Value Language
dc.contributor.authorReddy, N. S.-
dc.contributor.authorKrishnaiah, J.-
dc.contributor.author허보영-
dc.contributor.authorLee, Jae Sang-
dc.date.accessioned2022-12-26T21:47:05Z-
dc.date.available2022-12-26T21:47:05Z-
dc.date.issued2015-04-
dc.identifier.issn0927-0256-
dc.identifier.issn1879-0801-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/17296-
dc.description.abstractSteel design with the targeted properties is a challenging task due to the involvement of many variables and their complex interactions. Artificial neural networks (ANN) recognized for representing the complex relationships and genetic algorithms (GA) are successful for optimization of many real world problems. ANN has been used to identify the relative importance of variables those control the mechanical properties of medium carbon steels. We propose the combination of ANN and GA to optimize composition and heat treatment parameters for the desired mechanical properties. The trained ANN model was used as a fitness function and also as a predictive model. The predicted properties were realistic and higher for the model suggested with the optimum combination of composition and heat treatment variables. The proposed framework is expected to be useful in reducing the experiments required for designing new steels. (C) 2015 Elsevier B.V. All rights reserved.-
dc.format.extent7-
dc.language영어-
dc.language.isoENG-
dc.publisherElsevier BV-
dc.titleDesign of medium carbon steels by computational intelligence techniques-
dc.typeArticle-
dc.publisher.location네델란드-
dc.identifier.doi10.1016/j.commatsci.2015.01.031-
dc.identifier.scopusid2-s2.0-84922752308-
dc.identifier.wosid000350994700015-
dc.identifier.bibliographicCitationComputational Materials Science, v.101, pp 120 - 126-
dc.citation.titleComputational Materials Science-
dc.citation.volume101-
dc.citation.startPage120-
dc.citation.endPage126-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClasssci-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.subject.keywordPlusARTIFICIAL NEURAL-NETWORKS-
dc.subject.keywordPlusMECHANICAL-PROPERTIES-
dc.subject.keywordPlusGENETIC ALGORITHMS-
dc.subject.keywordPlusALLOY-
dc.subject.keywordPlusOPTIMIZATION-
dc.subject.keywordPlusSTRENGTH-
dc.subject.keywordPlusTEMPERATURE-
dc.subject.keywordPlusPREDICTION-
dc.subject.keywordAuthorNeural networks-
dc.subject.keywordAuthorGenetic algorithms-
dc.subject.keywordAuthorIndex of relative importance-
dc.subject.keywordAuthorMedium carbon steels-
dc.subject.keywordAuthorDesired properties-
dc.subject.keywordAuthorOptimization-
Files in This Item
There are no files associated with this item.
Appears in
Collections
공과대학 > 나노신소재공학부금속재료공학전공 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Reddy, N. Subba photo

Reddy, N. Subba
공과대학 (나노신소재공학부금속재료공학전공)
Read more

Altmetrics

Total Views & Downloads

BROWSE