Detailed Information

Cited 0 time in webofscience Cited 1 time in scopus
Metadata Downloads

Bayesian approach for Rician non-local means denoising in MR images

Full metadata record
DC Field Value Language
dc.contributor.authorKim, D. W.-
dc.contributor.authorKim, C.-
dc.contributor.authorLim, D. H.-
dc.date.accessioned2022-12-26T21:34:46Z-
dc.date.available2022-12-26T21:34:46Z-
dc.date.issued2015-07-
dc.identifier.issn1368-2199-
dc.identifier.issn1743-131X-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/17145-
dc.description.abstractIn this paper, we present an advanced algorithm for Rician noise reduction based on the combination of Bayesian estimation method, maximum a posteriori (MAP) and non-local mean (NLM) filtering. This algorithmis called the non-local MAP (NL-MAP) method. Our method constructs a proper prior for the unknown parameters, which is more realistic in describing actual beliefs about parameters. Moreover, we use observations, which proved to have statistically identical neighborhoods by statistical hypothesis test, in an NL neighborhood of a certain pixel to estimate its true noise free signal. We demonstrate that NL-MAP performs better than the NLM and non-local maximum likelihood estimation (NL-MLE) methods in terms of quantitative measures, especially in low signal-to-noise ratio (SNR) images; however, the NLM performs worst compared to other methods. On the other hand, NL-MAP performs well even when the SNR is high. The NL-MAP and NL-MLE methods also perform visually at a similar level, both better than the NLM method; however, the NL-MAP method performs better than the NL-MLE method through detailed comparisons with different criterion measures.-
dc.format.extent12-
dc.language영어-
dc.language.isoENG-
dc.publisherTAYLOR & FRANCIS LTD-
dc.titleBayesian approach for Rician non-local means denoising in MR images-
dc.typeArticle-
dc.publisher.location영국-
dc.identifier.doi10.1179/1743131X15Y.0000000008-
dc.identifier.scopusid2-s2.0-84931078843-
dc.identifier.wosid000356159500001-
dc.identifier.bibliographicCitationIMAGING SCIENCE JOURNAL, v.63, no.6, pp 303 - 314-
dc.citation.titleIMAGING SCIENCE JOURNAL-
dc.citation.volume63-
dc.citation.number6-
dc.citation.startPage303-
dc.citation.endPage314-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClasssci-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaImaging Science & Photographic Technology-
dc.relation.journalWebOfScienceCategoryImaging Science & Photographic Technology-
dc.subject.keywordPlusMAXIMUM-LIKELIHOOD-ESTIMATION-
dc.subject.keywordPlusNOISE-REDUCTION-
dc.subject.keywordPlusEDGE-DETECTION-
dc.subject.keywordPlusREMOVAL-
dc.subject.keywordAuthorImage denoising-
dc.subject.keywordAuthorMagnetic resonance images-
dc.subject.keywordAuthorNon-local means algorithm-
dc.subject.keywordAuthorNon-local maximum likelihood estimation-
dc.subject.keywordAuthorNon-local maximum a posteriori-
dc.subject.keywordAuthorRician noise-
Files in This Item
There are no files associated with this item.
Appears in
Collections
자연과학대학 > Dept. of Information and Statistics > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE