Cited 39 time in
An interval approach to robust design with parameter uncertainty
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Ouyang, Linhan | - |
| dc.contributor.author | Ma, Yizhong | - |
| dc.contributor.author | Byun, Jai-Hyun | - |
| dc.contributor.author | Wang, Jianjun | - |
| dc.contributor.author | Tu, Yiliu | - |
| dc.date.accessioned | 2022-12-26T21:23:27Z | - |
| dc.date.available | 2022-12-26T21:23:27Z | - |
| dc.date.issued | 2016 | - |
| dc.identifier.issn | 0020-7543 | - |
| dc.identifier.issn | 1366-588X | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/16801 | - |
| dc.description.abstract | In robust design, it is common to estimate empirical models that relate an output response variable to controllable input variables and uncontrollable noise variables from experimental data. However, when determining the optimal input settings that minimise output variability, parameter uncertainties in noise factors and response models are typically neglected. This article presents an interval robust design approach that takes parameter uncertainties into account through the confidence regions for these unknown parameters. To avoid obtaining an overly conservative design, the worst and best cases of mean squared error are both adopted to build an optimisation approach. The midpoint and radius of the interval are used to measure the location and dispersion performances, respectively. Meanwhile, a data-driven method is applied to obtain the relative weights of the location and dispersion performances in the optimisation approach. A simulation example and a case study using automobile manufacturing data from the dimensional tolerance design process are used to demonstrate the effectiveness of the proposed approach. The proposed approach of considering both uncertainties is shown to perform better than other approaches. | - |
| dc.format.extent | 15 | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | TAYLOR & FRANCIS LTD | - |
| dc.title | An interval approach to robust design with parameter uncertainty | - |
| dc.type | Article | - |
| dc.publisher.location | 영국 | - |
| dc.identifier.doi | 10.1080/00207543.2015.1078920 | - |
| dc.identifier.scopusid | 2-s2.0-84940522353 | - |
| dc.identifier.wosid | 000375208100004 | - |
| dc.identifier.bibliographicCitation | INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, v.54, no.11, pp 3201 - 3215 | - |
| dc.citation.title | INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH | - |
| dc.citation.volume | 54 | - |
| dc.citation.number | 11 | - |
| dc.citation.startPage | 3201 | - |
| dc.citation.endPage | 3215 | - |
| dc.type.docType | Article | - |
| dc.description.isOpenAccess | N | - |
| dc.description.journalRegisteredClass | sci | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalResearchArea | Engineering | - |
| dc.relation.journalResearchArea | Operations Research & Management Science | - |
| dc.relation.journalWebOfScienceCategory | Engineering, Industrial | - |
| dc.relation.journalWebOfScienceCategory | Engineering, Manufacturing | - |
| dc.relation.journalWebOfScienceCategory | Operations Research & Management Science | - |
| dc.subject.keywordPlus | SURFACE OPTIMIZATION | - |
| dc.subject.keywordPlus | BAYESIAN-APPROACH | - |
| dc.subject.keywordPlus | SETTINGS | - |
| dc.subject.keywordPlus | QUALITY | - |
| dc.subject.keywordAuthor | robust parameter design | - |
| dc.subject.keywordAuthor | confidence region | - |
| dc.subject.keywordAuthor | interval analysis | - |
| dc.subject.keywordAuthor | parameter uncertainty | - |
| dc.subject.keywordAuthor | location and dispersion performances | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
