Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Time Delay Estimation Using De-Convolution

Full metadata record
DC Field Value Language
dc.contributor.author고진환-
dc.contributor.author이흥관-
dc.contributor.author한석붕-
dc.contributor.author전정환-
dc.date.accessioned2022-12-26T20:46:08Z-
dc.date.available2022-12-26T20:46:08Z-
dc.date.issued2016-
dc.identifier.issn1226-4717-
dc.identifier.issn2287-3880-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/16059-
dc.description.abstractThis paper deals with the problem of time delay estimation using de-convolution. Two approaches, conjugate gradient method and the total lease square method have been presented to solve the de-convolution problem. Numerical simulation demonstrates the superior performance of the proposed methods over the conventional GCC based algorithms and FIR filter method.-
dc.format.extent8-
dc.language영어-
dc.language.isoENG-
dc.publisher한국통신학회-
dc.titleTime Delay Estimation Using De-Convolution-
dc.title.alternativeTime Delay Estimation Using De-Convolution-
dc.typeArticle-
dc.publisher.location대한민국-
dc.identifier.bibliographicCitation한국통신학회논문지, v.41, no.12, pp 1692 - 1699-
dc.citation.title한국통신학회논문지-
dc.citation.volume41-
dc.citation.number12-
dc.citation.startPage1692-
dc.citation.endPage1699-
dc.identifier.kciidART002185051-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClasskci-
dc.subject.keywordAuthorTime delay-
dc.subject.keywordAuthorDe-convolution-
dc.subject.keywordAuthorConjugate gradient-
dc.subject.keywordAuthorTotal least square-
Files in This Item
There are no files associated with this item.
Appears in
Collections
공과대학 > Department of Industrial and Systems Engineering > Journal Articles
공과대학 > 전자공학과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Jeon, Jeong Hwan photo

Jeon, Jeong Hwan
공과대학 (산업시스템공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE