Detailed Information

Cited 32 time in webofscience Cited 35 time in scopus
Metadata Downloads

Quantitative estimation of poly(methyl methacrylate) nano-fiber membrane diameter by artificial neural networks

Full metadata record
DC Field Value Language
dc.contributor.authorSadan, Milan K.-
dc.contributor.authorAhn, Hyo-Jun-
dc.contributor.authorChauhan, G. S.-
dc.contributor.authorReddy, N. S.-
dc.date.accessioned2022-12-26T20:22:09Z-
dc.date.available2022-12-26T20:22:09Z-
dc.date.issued2016-01-
dc.identifier.issn0014-3057-
dc.identifier.issn1873-1945-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/15751-
dc.description.abstractRelationship between the electrospun fiber diameters of poly(methyl methacrylate) (PMMA) nanofibers with process parameters are complex and nonlinear. We used artificial neural networks technique to estimate the electrospun PMMA nanofiber diameter as a function of polymer concentration, nozzle-collector distance, temperature, flow rate, and voltage. The average errors of the predicted fiber diameters for training and testing data were found to be 1.26% and 5.74%, respectively. Process window for optimum nanofiber diameter was generated. The proposed index of relative importance, evaluated in this study, will be a useful guide to quantitatively and qualitatively identify and define the importance of different electrospinning parameters on the fiber diameter. (C) 2015 Elsevier Ltd. All rights reserved.-
dc.format.extent10-
dc.language영어-
dc.language.isoENG-
dc.publisherPergamon Press Ltd.-
dc.titleQuantitative estimation of poly(methyl methacrylate) nano-fiber membrane diameter by artificial neural networks-
dc.typeArticle-
dc.publisher.location영국-
dc.identifier.doi10.1016/j.eurpolymj.2015.11.014-
dc.identifier.scopusid2-s2.0-84947794775-
dc.identifier.wosid000369204100009-
dc.identifier.bibliographicCitationEuropean Polymer Journal, v.74, pp 91 - 100-
dc.citation.titleEuropean Polymer Journal-
dc.citation.volume74-
dc.citation.startPage91-
dc.citation.endPage100-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClasssci-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaPolymer Science-
dc.relation.journalWebOfScienceCategoryPolymer Science-
dc.subject.keywordPlusRESPONSE-SURFACE METHODOLOGY-
dc.subject.keywordPlusELECTROSPUN-
dc.subject.keywordPlusDESIGN-
dc.subject.keywordPlusNANOFIBERS-
dc.subject.keywordPlusPREDICTION-
dc.subject.keywordPlusSTABILITY-
dc.subject.keywordPlusKINETICS-
dc.subject.keywordAuthorPMMA fiber diameter-
dc.subject.keywordAuthorArtificial neural networks-
dc.subject.keywordAuthorProcess window-
dc.subject.keywordAuthorSensitivity analysis-
dc.subject.keywordAuthorIndex of relative importance-
Files in This Item
There are no files associated with this item.
Appears in
Collections
공과대학 > 나노신소재공학부금속재료공학전공 > Journal Articles
공학계열 > Dept.of Materials Engineering and Convergence Technology > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Ahn, Hyo Jun photo

Ahn, Hyo Jun
대학원 (나노신소재융합공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE