Cited 31 time in
Combinatorial engineering of hybrid mevalonate pathways in Escherichia coli for protoilludene production
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Yang, Liyang | - |
| dc.contributor.author | Wang, Chonglong | - |
| dc.contributor.author | Zhou, Jia | - |
| dc.contributor.author | Kim, Seon-Won | - |
| dc.date.accessioned | 2022-12-26T20:21:22Z | - |
| dc.date.available | 2022-12-26T20:21:22Z | - |
| dc.date.issued | 2016-01 | - |
| dc.identifier.issn | 1475-2859 | - |
| dc.identifier.issn | 1475-2859 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/15715 | - |
| dc.description.abstract | Background: Protoilludene is a valuable sesquiterpene and serves as a precursor for several medicinal compounds and antimicrobial chemicals. It can be synthesized by heterologous expression of protoilludene synthase in Escherichia coli with overexpression of mevalonate (MVA) or methylerythritol-phosphate (MEP) pathway, and farnesyl diphosphate (FPP) synthase. Here, we present E. coli as a cell factory for protoilludene production. Results: Protoilludene was successfully produced in E. coli by overexpression of a hybrid exogenous MVA pathway, endogenous FPP synthase (IspA), and protoilludene synthase (OMP7) of Omphalotus olearius. For improving protoilludene production, the MVA pathway was engineered to increase synthesis of building blocks isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) by sequential order permutation of the lower MVA portion (MvL), the alteration of promoters and copy numbers for the upper MVA portion (MvU), and the coordination of both portions, resulting in an efficient entire MVA pathway. To reduce the accumulation of mevalonate observed in the culture broth due to lower efficiency of the MvL than the MvU, the MvL was further engineered by homolog substitution with the corresponding genes from Staphylococcus aureus. Finally, the highest protoilludene production of 1199 mg/L was obtained from recombinant E. coli harboring the optimized hybrid MVA pathway in a test tube culture. Conclusions: This is the first report of microbial synthesis of protoilludene by using an engineered E. coli strain. The protoilludene production was increased by approx. Thousandfold from an initial titer of 1.14 mg/L. The strategies of both the sequential order permutation and homolog substitution could provide a new perspective of engineering MVA pathway, and be applied to optimization of other metabolic pathways. | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | BioMed Central | - |
| dc.title | Combinatorial engineering of hybrid mevalonate pathways in Escherichia coli for protoilludene production | - |
| dc.type | Article | - |
| dc.publisher.location | 영국 | - |
| dc.identifier.doi | 10.1186/s12934-016-0409-7 | - |
| dc.identifier.scopusid | 2-s2.0-84955249209 | - |
| dc.identifier.wosid | 000368236400001 | - |
| dc.identifier.bibliographicCitation | Microbial Cell Factories, v.15, no.1 | - |
| dc.citation.title | Microbial Cell Factories | - |
| dc.citation.volume | 15 | - |
| dc.citation.number | 1 | - |
| dc.type.docType | Article | - |
| dc.description.isOpenAccess | N | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalResearchArea | Biotechnology & Applied Microbiology | - |
| dc.relation.journalWebOfScienceCategory | Biotechnology & Applied Microbiology | - |
| dc.subject.keywordPlus | ISOPRENOID BIOSYNTHETIC-PATHWAY | - |
| dc.subject.keywordPlus | PREDICTIVE FRAMEWORK | - |
| dc.subject.keywordPlus | SESQUITERPENES | - |
| dc.subject.keywordPlus | BASIDIOMYCOTA | - |
| dc.subject.keywordPlus | OPTIMIZATION | - |
| dc.subject.keywordPlus | EXPRESSION | - |
| dc.subject.keywordAuthor | Protoilludene | - |
| dc.subject.keywordAuthor | Escherichia coli | - |
| dc.subject.keywordAuthor | Mevalonate pathway | - |
| dc.subject.keywordAuthor | Sequential order permutation | - |
| dc.subject.keywordAuthor | Homolog substitution | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
