Detailed Information

Cited 5 time in webofscience Cited 6 time in scopus
Metadata Downloads

Weakly holomorphic Hecke eigenforms and Hecke eigenpolynomials

Full metadata record
DC Field Value Language
dc.contributor.authorChoi, SoYoung-
dc.contributor.authorKim, Chang Heon-
dc.date.accessioned2022-12-26T20:20:07Z-
dc.date.available2022-12-26T20:20:07Z-
dc.date.issued2016-02-26-
dc.identifier.issn0001-8708-
dc.identifier.issn1090-2082-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/15661-
dc.description.abstractIn the work of Bringmann, Guerzhoy, Kent and Ono [2] weakly holomorphic Hecke eigenforms are defined and constructed in the level one case by making use of harmonic weak Maass forms. In this paper we extend their results to higher level cases and give an explicit construction in terms of weakly holomorphic modular forms without relying on the theory of harmonic weak Maass forms. Moreover we find a basis for the space of period polynomials consisting of Hecke eigenpolynomials. (C) 2015 Elsevier Inc. All rights reserved.-
dc.format.extent19-
dc.language영어-
dc.language.isoENG-
dc.publisherACADEMIC PRESS INC ELSEVIER SCIENCE-
dc.titleWeakly holomorphic Hecke eigenforms and Hecke eigenpolynomials-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1016/j.aim.2015.12.002-
dc.identifier.scopusid2-s2.0-84951325923-
dc.identifier.wosid000369681900005-
dc.identifier.bibliographicCitationADVANCES IN MATHEMATICS, v.290, pp 144 - 162-
dc.citation.titleADVANCES IN MATHEMATICS-
dc.citation.volume290-
dc.citation.startPage144-
dc.citation.endPage162-
dc.type.docTypeArticle-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClasssci-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMathematics-
dc.relation.journalWebOfScienceCategoryMathematics-
dc.subject.keywordPlusRATIONAL PERIOD FUNCTIONS-
dc.subject.keywordPlusMODULAR-FORMS-
dc.subject.keywordPlusCYCLE INTEGRALS-
dc.subject.keywordPlusCONGRUENCES-
dc.subject.keywordPlusOPERATORS-
dc.subject.keywordAuthorWeakly holomorphic modular forms-
dc.subject.keywordAuthorHecke eigenforms-
dc.subject.keywordAuthorPeriod polynomials-
Files in This Item
There are no files associated with this item.
Appears in
Collections
사범대학 > 수학교육과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Choi, So Young photo

Choi, So Young
사범대학 (수학교육과)
Read more

Altmetrics

Total Views & Downloads

BROWSE