Cited 6 time in
Stochastic simulation of precipitation data for preserving key statistics in their original domain and application to climate change analysis
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Lee, Taesam | - |
| dc.date.accessioned | 2022-12-26T20:18:56Z | - |
| dc.date.available | 2022-12-26T20:18:56Z | - |
| dc.date.issued | 2016-04 | - |
| dc.identifier.issn | 0177-798X | - |
| dc.identifier.issn | 1434-4483 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/15600 | - |
| dc.description.abstract | We propose a new method to estimate autoregressive model parameters of the precipitation amount process using the relationship between original and transformed moments derived through a moment generating function. We compare the proposed method with the traditional parameter estimation method, which uses transformed data, by modeling precipitation data from Denver International Airport (DIA), CO. We test the applicability of the proposed method (M2) to climate change analysis using the RCP 8.5 scenario. The modeling results for the observed data and future climate scenario indicate that M2 reproduces key historical and targeted future climate statistics fairly well, while M1 presents significant bias in the original domain and cannot be applied to climate change analysis. | - |
| dc.format.extent | 12 | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | SPRINGER WIEN | - |
| dc.title | Stochastic simulation of precipitation data for preserving key statistics in their original domain and application to climate change analysis | - |
| dc.type | Article | - |
| dc.publisher.location | 오스트리아 | - |
| dc.identifier.doi | 10.1007/s00704-015-1395-0 | - |
| dc.identifier.scopusid | 2-s2.0-84923013458 | - |
| dc.identifier.wosid | 000373143600008 | - |
| dc.identifier.bibliographicCitation | THEORETICAL AND APPLIED CLIMATOLOGY, v.124, no.1-2, pp 91 - 102 | - |
| dc.citation.title | THEORETICAL AND APPLIED CLIMATOLOGY | - |
| dc.citation.volume | 124 | - |
| dc.citation.number | 1-2 | - |
| dc.citation.startPage | 91 | - |
| dc.citation.endPage | 102 | - |
| dc.type.docType | Article | - |
| dc.description.isOpenAccess | N | - |
| dc.description.journalRegisteredClass | sci | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalResearchArea | Meteorology & Atmospheric Sciences | - |
| dc.relation.journalWebOfScienceCategory | Meteorology & Atmospheric Sciences | - |
| dc.subject.keywordPlus | RAINFALL | - |
| dc.subject.keywordPlus | MODEL | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
