Detailed Information

Cited 6 time in webofscience Cited 6 time in scopus
Metadata Downloads

Stochastic simulation of precipitation data for preserving key statistics in their original domain and application to climate change analysis

Full metadata record
DC Field Value Language
dc.contributor.authorLee, Taesam-
dc.date.accessioned2022-12-26T20:18:56Z-
dc.date.available2022-12-26T20:18:56Z-
dc.date.issued2016-04-
dc.identifier.issn0177-798X-
dc.identifier.issn1434-4483-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/15600-
dc.description.abstractWe propose a new method to estimate autoregressive model parameters of the precipitation amount process using the relationship between original and transformed moments derived through a moment generating function. We compare the proposed method with the traditional parameter estimation method, which uses transformed data, by modeling precipitation data from Denver International Airport (DIA), CO. We test the applicability of the proposed method (M2) to climate change analysis using the RCP 8.5 scenario. The modeling results for the observed data and future climate scenario indicate that M2 reproduces key historical and targeted future climate statistics fairly well, while M1 presents significant bias in the original domain and cannot be applied to climate change analysis.-
dc.format.extent12-
dc.language영어-
dc.language.isoENG-
dc.publisherSPRINGER WIEN-
dc.titleStochastic simulation of precipitation data for preserving key statistics in their original domain and application to climate change analysis-
dc.typeArticle-
dc.publisher.location오스트리아-
dc.identifier.doi10.1007/s00704-015-1395-0-
dc.identifier.scopusid2-s2.0-84923013458-
dc.identifier.wosid000373143600008-
dc.identifier.bibliographicCitationTHEORETICAL AND APPLIED CLIMATOLOGY, v.124, no.1-2, pp 91 - 102-
dc.citation.titleTHEORETICAL AND APPLIED CLIMATOLOGY-
dc.citation.volume124-
dc.citation.number1-2-
dc.citation.startPage91-
dc.citation.endPage102-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClasssci-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMeteorology & Atmospheric Sciences-
dc.relation.journalWebOfScienceCategoryMeteorology & Atmospheric Sciences-
dc.subject.keywordPlusRAINFALL-
dc.subject.keywordPlusMODEL-
Files in This Item
There are no files associated with this item.
Appears in
Collections
공과대학 > Department of Civil Engineering > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Tae Sam photo

Lee, Tae Sam
공과대학 (토목공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE