Detailed Information

Cited 10 time in webofscience Cited 13 time in scopus
Metadata Downloads

A Prediction Region-based Approach to Model Uncertainty for Multi-response Optimization

Full metadata record
DC Field Value Language
dc.contributor.authorOuyang, Linhan-
dc.contributor.authorMa, Yizhong-
dc.contributor.authorByun, Jai-Hyun-
dc.contributor.authorWang, Jianjun-
dc.contributor.authorTu, Yiliu-
dc.date.accessioned2022-12-26T20:18:24Z-
dc.date.available2022-12-26T20:18:24Z-
dc.date.issued2016-04-
dc.identifier.issn0748-8017-
dc.identifier.issn1099-1638-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/15572-
dc.description.abstractMulti-response optimization methods rely on empirical process models based on the estimates of model parameters that relate response variables to a set of design variables. However, in determining the optimal conditions for the design variables, model uncertainty is typically neglected, resulting in an unstable optimal solution. This paper proposes a new optimization strategy that takes model uncertainty into account via the prediction region for multiple responses. To avoid obtaining an overly conservative design, the location and dispersion performances are constructed based on the best-case strategy and the worst-case strategy of expected loss. We reveal that the traditional loss function and the minimax/maximin strategy are both special cases of the proposed approach. An example is illustrated to present the procedure and the effectiveness of the proposed loss function. The results show that the proposed approach can give reasonable results when both the location and dispersion performances are important issues. Copyright (c) 2015 John Wiley & Sons, Ltd.-
dc.format.extent12-
dc.language영어-
dc.language.isoENG-
dc.publisherWILEY-BLACKWELL-
dc.titleA Prediction Region-based Approach to Model Uncertainty for Multi-response Optimization-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1002/qre.1790-
dc.identifier.scopusid2-s2.0-84929627190-
dc.identifier.wosid000372889600004-
dc.identifier.bibliographicCitationQUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, v.32, no.3, pp 783 - 794-
dc.citation.titleQUALITY AND RELIABILITY ENGINEERING INTERNATIONAL-
dc.citation.volume32-
dc.citation.number3-
dc.citation.startPage783-
dc.citation.endPage794-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaOperations Research & Management Science-
dc.relation.journalWebOfScienceCategoryEngineering, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryEngineering, Industrial-
dc.relation.journalWebOfScienceCategoryOperations Research & Management Science-
dc.subject.keywordPlusROBUST PARAMETER DESIGN-
dc.subject.keywordPlusMULTIPLE-RESPONSE OPTIMIZATION-
dc.subject.keywordPlusDESIRABILITY FUNCTION-METHOD-
dc.subject.keywordPlusSURFACE OPTIMIZATION-
dc.subject.keywordPlusMETHODOLOGY-
dc.subject.keywordAuthormulti-response optimization-
dc.subject.keywordAuthorprediction region-
dc.subject.keywordAuthormodel uncertainty-
dc.subject.keywordAuthorloss function-
dc.subject.keywordAuthorlocation and dispersion performances-
Files in This Item
There are no files associated with this item.
Appears in
Collections
공과대학 > Department of Industrial and Systems Engineering > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Byun, Jai Hyun photo

Byun, Jai Hyun
공과대학 (산업시스템공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE