Detailed Information

Cited 2 time in webofscience Cited 2 time in scopus
Metadata Downloads

Development of the Integrated Glaucoma Risk Index

Full metadata record
DC Field Value Language
dc.contributor.authorOh, Sejong-
dc.contributor.authorCho, Kyong Jin-
dc.contributor.authorKim, Seong-Jae-
dc.date.accessioned2022-12-26T07:21:09Z-
dc.date.available2022-12-26T07:21:09Z-
dc.date.issued2022-03-
dc.identifier.issn2075-4418-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/1552-
dc.description.abstractVarious machine-learning schemes have been proposed to diagnose glaucoma. They can classify subjects into 'normal' or 'glaucoma'-positive but cannot determine the severity of the latter. To complement this, researchers have proposed statistical indices for glaucoma risk. However, they are based on a single examination indicator and do not reflect the total severity of glaucoma progression. In this study, we propose an integrated glaucoma risk index (I-GRI) based on the visual field (VF) test, optical coherence tomography (OCT), and intraocular pressure (TOP) test. We extracted important features from the examination data using a machine learning scheme and integrated them into a single measure using a mathematical equation. The proposed index produces a value between 0 and 1; the higher the risk index value, the greater the risk/severity of glaucoma. In the sanity test using test cases, the I-GRI showed a balanced distribution in both glaucoma and normal cases. When we classified glaucoma and normal cases using the I-GRI, we obtained a misclassification rate of 0.07 (7%). The proposed index is useful for diagnosing glaucoma and for detecting its progression.-
dc.language영어-
dc.language.isoENG-
dc.publisherMDPI AG-
dc.titleDevelopment of the Integrated Glaucoma Risk Index-
dc.typeArticle-
dc.publisher.location스위스-
dc.identifier.doi10.3390/diagnostics12030734-
dc.identifier.scopusid2-s2.0-85127380845-
dc.identifier.wosid000775540800001-
dc.identifier.bibliographicCitationDiagnostics, v.12, no.3-
dc.citation.titleDiagnostics-
dc.citation.volume12-
dc.citation.number3-
dc.type.docTypeArticle-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaGeneral & Internal Medicine-
dc.relation.journalWebOfScienceCategoryMedicine, General & Internal-
dc.subject.keywordPlusDIAGNOSIS-
dc.subject.keywordPlusSYSTEM-
dc.subject.keywordAuthorglaucoma-
dc.subject.keywordAuthormachine learning-
dc.subject.keywordAuthorprediction-
dc.subject.keywordAuthorrisk index-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Medicine > Department of Medicine > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Seong Jae photo

Kim, Seong Jae
의과대학 (의학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE