Cited 188 time in
A CFD study into the influence of unsteady aerodynamic interference on wind turbine surge motion
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Thanh Toan Tran | - |
| dc.contributor.author | Kim, Dong-Hyun | - |
| dc.date.accessioned | 2022-12-26T20:17:30Z | - |
| dc.date.available | 2022-12-26T20:17:30Z | - |
| dc.date.issued | 2016-05 | - |
| dc.identifier.issn | 0960-1481 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/15526 | - |
| dc.description.abstract | To improve knowledge of the unsteady aerodynamic characteristics and interference effects of a floating offshore wind turbine (FOWT), this article focuses on the platform surge motion of a full configuration wind turbine with the rotating blades, hub, nacelle, and tower shapes. Unsteady aerodynamic analyses considering the moving motion of an entire configuration wind turbine have been conducted using an advanced computational fluid dynamics (CFD) and a conventional blade element momentum (BEM) analyses. The present CFD simulation is based on an advanced overset moving grid method to accurately consider the local and global motion of a three-dimensional wind turbine. The effects of various oscillation frequencies and amplitudes of the platform surge motion have been widely investigated herein. Three-dimensional unsteady flow fields around the moving wind turbine with rotating blades are graphically presented in detail. Complex flow interactions among blade tip vortices, tower shedding vortices, and turbulent wakes are physically observed. Comparisons of different aerodynamic analyses under the periodic surge motions are summarized to show the potential distinction among applied numerical methods. The present result indicates that the unsteady aerodynamic thrust and power tend to vary considerably depending on the oscillation frequency and amplitude of the surge motion. (C) 2015 Elsevier Ltd. All rights reserved. | - |
| dc.format.extent | 25 | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | PERGAMON-ELSEVIER SCIENCE LTD | - |
| dc.title | A CFD study into the influence of unsteady aerodynamic interference on wind turbine surge motion | - |
| dc.type | Article | - |
| dc.publisher.location | 영국 | - |
| dc.identifier.doi | 10.1016/j.renene.2015.12.013 | - |
| dc.identifier.scopusid | 2-s2.0-84953217924 | - |
| dc.identifier.wosid | 000370102400020 | - |
| dc.identifier.bibliographicCitation | RENEWABLE ENERGY, v.90, pp 204 - 228 | - |
| dc.citation.title | RENEWABLE ENERGY | - |
| dc.citation.volume | 90 | - |
| dc.citation.startPage | 204 | - |
| dc.citation.endPage | 228 | - |
| dc.type.docType | Article | - |
| dc.description.isOpenAccess | N | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
| dc.relation.journalResearchArea | Energy & Fuels | - |
| dc.relation.journalWebOfScienceCategory | Green & Sustainable Science & Technology | - |
| dc.relation.journalWebOfScienceCategory | Energy & Fuels | - |
| dc.subject.keywordPlus | 3D SIMULATION | - |
| dc.subject.keywordPlus | WAKE | - |
| dc.subject.keywordPlus | MODEL | - |
| dc.subject.keywordPlus | DYNAMICS | - |
| dc.subject.keywordPlus | ROTORS | - |
| dc.subject.keywordAuthor | Unsteady aerodynamics | - |
| dc.subject.keywordAuthor | Surge motion | - |
| dc.subject.keywordAuthor | Floating offshore wind turbine | - |
| dc.subject.keywordAuthor | Computational fluid dynamics | - |
| dc.subject.keywordAuthor | Over-set grid | - |
| dc.subject.keywordAuthor | Blade element momentum theory | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
