Detailed Information

Cited 1 time in webofscience Cited 1 time in scopus
Metadata Downloads

The location of zeros of a quasi-modular form of weight 2 for Gamma(+)(0)(p) for p=2, 3

Full metadata record
DC Field Value Language
dc.contributor.authorChoi, SoYoung-
dc.contributor.authorIm, Bo-Hae-
dc.date.accessioned2022-12-26T20:05:40Z-
dc.date.available2022-12-26T20:05:40Z-
dc.date.issued2016-06-01-
dc.identifier.issn0022-247X-
dc.identifier.issn1096-0813-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/15421-
dc.description.abstractLet E-2(z) be the Eisenstein series which is quasi-modular of weight 2 for SL2(Z). For each p = 2,3, we show that there are infinitely many Gamma(+)(0)(p)-inequivalent zeros of the quasi-modular form E(z) := E-2(z) + pE(2)(pz) of weight 2 for Gamma(+)(0)(p) and give the estimates of their locations numerically. (C) 2016 Elsevier Inc. All rights reserved.-
dc.format.extent20-
dc.language영어-
dc.language.isoENG-
dc.publisherACADEMIC PRESS INC ELSEVIER SCIENCE-
dc.titleThe location of zeros of a quasi-modular form of weight 2 for Gamma(+)(0)(p) for p=2, 3-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1016/j.jmaa.2016.01.061-
dc.identifier.scopusid2-s2.0-84959178339-
dc.identifier.wosid000371650100007-
dc.identifier.bibliographicCitationJOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, v.438, no.1, pp 73 - 92-
dc.citation.titleJOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS-
dc.citation.volume438-
dc.citation.number1-
dc.citation.startPage73-
dc.citation.endPage92-
dc.type.docTypeArticle-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClasssci-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMathematics-
dc.relation.journalWebOfScienceCategoryMathematics, Applied-
dc.relation.journalWebOfScienceCategoryMathematics-
dc.subject.keywordAuthorQuasi-modular form-
Files in This Item
There are no files associated with this item.
Appears in
Collections
사범대학 > 수학교육과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Choi, So Young photo

Choi, So Young
사범대학 (수학교육과)
Read more

Altmetrics

Total Views & Downloads

BROWSE