Detailed Information

Cited 40 time in webofscience Cited 41 time in scopus
Metadata Downloads

Atomic structural and electrochemical impact of Fe substitution on nano porous LiMnPO4

Full metadata record
DC Field Value Language
dc.contributor.authorSeo, Inseok-
dc.contributor.authorSenthilkumar, B.-
dc.contributor.authorKim, Kwang-Ho-
dc.contributor.authorKim, Jae-Kwang-
dc.contributor.authorKim, Youngsik-
dc.contributor.authorAhn, Jou-Hyeon-
dc.date.accessioned2022-12-26T20:04:52Z-
dc.date.available2022-12-26T20:04:52Z-
dc.date.issued2016-07-15-
dc.identifier.issn0378-7753-
dc.identifier.issn1873-2755-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/15373-
dc.description.abstractThe atomic structural and electrochemical properties of Fe substituted nano porous LiMn1-xFexPO4 (x = 0-0.8) composites are investigated and compared. X-ray scattering method is used for atomic structural investigation. Rietveld refinement shows that all Fe substituted composites have the same olivine structure (Pnma) with lithium occupying octahedral 4a sites, Fe2+ replacing Mn2+ at the octahedral 4c sites. The a, b, c parameters and cell volume decrease with the addition of Feet. When the nano porous LiMn1-xFexPO4 composites are evaluated as cathode materials in lithium cells at room temperature, x = 0.6, and 0.8 resulted in the best overall electrochemical performance, exhibiting stable cycling and high discharge capacities of 149 and 154 mA h g(-1), respectively. The composites with above x = 0.4 show a fast lithium ions transfer with high electronic conductivity because Fe transition metal substitution reduce the partly occupation of Mn in the M1 (LiO6) sites and thereby Mn block the lithium ion diffusion pathway. We here firstly find the antisite defect in the high Mn content in porous LiMn1-xFexPO4 composites. (C) 2016 Elsevier B.V. All rights reserved.-
dc.format.extent9-
dc.language영어-
dc.language.isoENG-
dc.publisherELSEVIER-
dc.titleAtomic structural and electrochemical impact of Fe substitution on nano porous LiMnPO4-
dc.typeArticle-
dc.publisher.location네델란드-
dc.identifier.doi10.1016/j.jpowsour.2016.04.061-
dc.identifier.scopusid2-s2.0-84964320214-
dc.identifier.wosid000376828900008-
dc.identifier.bibliographicCitationJOURNAL OF POWER SOURCES, v.320, pp 59 - 67-
dc.citation.titleJOURNAL OF POWER SOURCES-
dc.citation.volume320-
dc.citation.startPage59-
dc.citation.endPage67-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClasssci-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaElectrochemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryElectrochemistry-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.subject.keywordPlusLIFEPO4 CATHODE MATERIAL-
dc.subject.keywordPlusCARBON-COATED LIFEPO4-
dc.subject.keywordPlusHYDROTHERMAL SYNTHESIS-
dc.subject.keywordPlusLITHIUM-
dc.subject.keywordPlusBATTERY-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusTEMPERATURE-
dc.subject.keywordPlusCAPACITY-
dc.subject.keywordPlusOLIVINES-
dc.subject.keywordPlusMICRO-
dc.subject.keywordAuthorBond theory-
dc.subject.keywordAuthorElectrochemistry-
dc.subject.keywordAuthorNanostructures-
dc.subject.keywordAuthorStructure-activity relationships-
dc.subject.keywordAuthorCations-
Files in This Item
There are no files associated with this item.
Appears in
Collections
공학계열 > Dept.of Materials Engineering and Convergence Technology > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE