Cited 2 time in
CENTROIDS AND SOME CHARACTERIZATIONS OF CATENARIES
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Kim, Dong-Soo | - |
| dc.contributor.author | Moon, Hyung Tae | - |
| dc.contributor.author | Yoon, Dae Won | - |
| dc.date.accessioned | 2022-12-26T19:48:42Z | - |
| dc.date.available | 2022-12-26T19:48:42Z | - |
| dc.date.issued | 2017 | - |
| dc.identifier.issn | 1225-1763 | - |
| dc.identifier.issn | 2234-3024 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/15043 | - |
| dc.description.abstract | For every interval [a, b], we denote by ((x) over bar (A), (y) over bar (A)) and ((x) over bar (L), (y) over bar (L)) the geometric centroid of the area under a catenary y = k cosh((x - c)/k) defined on this interval and the centroid of the curve itself, respectively. Then, it is well-known that (x) over bar (L) = (x) over bar (A) and (y) over bar (L) = 2 (y) over bar (A). In this paper, we show that one of ($) over bar (L) = (x) over bar (A) and (y) over bar (L) = 2 (y) over bar (A) characterizes the family of catenaries among nonconstant C-2 functions. Furthermore, we show that among nonconstant and nonlinear C-2 functions, (y) over bar (L)/(x) over bar (L) = 2 (y) over bar (A)/(x) over bar (A) is also a characteristic property of catenaries. | - |
| dc.format.extent | 6 | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | KOREAN MATHEMATICAL SOC | - |
| dc.title | CENTROIDS AND SOME CHARACTERIZATIONS OF CATENARIES | - |
| dc.type | Article | - |
| dc.publisher.location | 대한민국 | - |
| dc.identifier.doi | 10.4134/CKMS.c160135 | - |
| dc.identifier.scopusid | 2-s2.0-85025163046 | - |
| dc.identifier.wosid | 000408436700019 | - |
| dc.identifier.bibliographicCitation | COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, v.32, no.3, pp 709 - 714 | - |
| dc.citation.title | COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY | - |
| dc.citation.volume | 32 | - |
| dc.citation.number | 3 | - |
| dc.citation.startPage | 709 | - |
| dc.citation.endPage | 714 | - |
| dc.type.docType | Article | - |
| dc.identifier.kciid | ART002247874 | - |
| dc.description.isOpenAccess | N | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.description.journalRegisteredClass | esci | - |
| dc.description.journalRegisteredClass | kci | - |
| dc.relation.journalResearchArea | Mathematics | - |
| dc.relation.journalWebOfScienceCategory | Mathematics | - |
| dc.subject.keywordAuthor | centroid | - |
| dc.subject.keywordAuthor | perimeter centroid | - |
| dc.subject.keywordAuthor | area | - |
| dc.subject.keywordAuthor | arc length | - |
| dc.subject.keywordAuthor | catenary | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
