Cited 1 time in
A CONSTRUCTION OF TWO-WEIGHT CODES AND ITS APPLICATIONS
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Cheon, Eun Ju | - |
| dc.contributor.author | Kageyama, Yuuki | - |
| dc.contributor.author | Kim, Seon Jeong | - |
| dc.contributor.author | Lee, Namyong | - |
| dc.contributor.author | Maruta, Tatsuya | - |
| dc.date.accessioned | 2022-12-26T19:48:10Z | - |
| dc.date.available | 2022-12-26T19:48:10Z | - |
| dc.date.issued | 2017 | - |
| dc.identifier.issn | 1015-8634 | - |
| dc.identifier.issn | 2234-3016 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/15009 | - |
| dc.description.abstract | It is well-known that there exists a constant-weight [s theta (k - 1), k, sq(k - 1)](q) code for any positive integer s, which is an s-fold simplex code, where 0(j) - (q(j) (+ 1) -1)/(q - 1). This gives an upper bound n(q)(k, sq(k - 1) + d) < s theta (k) (1) + n(q) (k,d) for any positive integer d, where n(q)(k,d) is the minimum length n for which an [n, k, d](q) code exists. We construct a two-weight [s theta(k - 1) + 1, k, sq(k) (-) (1)](q) code for 1 <= s <= k - 3, which gives a better upper bound n(q) (k, sq(k - 1) + d) <= s theta (k - 1) + 1 + n(q) (K - 1,d) for 1 <= d <= q(s). As another application, we prove that n(q)(5,d) = Sigma(4)(i)=0 left perpendicular d/q(i) right perpendicular.for q(4) + 1 <= d <= q(4) + q for any prime power q. | - |
| dc.format.extent | 6 | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | KOREAN MATHEMATICAL SOC | - |
| dc.title | A CONSTRUCTION OF TWO-WEIGHT CODES AND ITS APPLICATIONS | - |
| dc.type | Article | - |
| dc.publisher.location | 대한민국 | - |
| dc.identifier.doi | 10.4134/BKMS.b151011 | - |
| dc.identifier.scopusid | 2-s2.0-85019660682 | - |
| dc.identifier.wosid | 000404824800002 | - |
| dc.identifier.bibliographicCitation | BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, v.54, no.3, pp 731 - 736 | - |
| dc.citation.title | BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY | - |
| dc.citation.volume | 54 | - |
| dc.citation.number | 3 | - |
| dc.citation.startPage | 731 | - |
| dc.citation.endPage | 736 | - |
| dc.type.docType | Article | - |
| dc.identifier.kciid | ART002225857 | - |
| dc.description.isOpenAccess | Y | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.description.journalRegisteredClass | kci | - |
| dc.relation.journalResearchArea | Mathematics | - |
| dc.relation.journalWebOfScienceCategory | Mathematics | - |
| dc.subject.keywordAuthor | linear code | - |
| dc.subject.keywordAuthor | two-weight code | - |
| dc.subject.keywordAuthor | length optimal code | - |
| dc.subject.keywordAuthor | Griesmer bound | - |
| dc.subject.keywordAuthor | projective space | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
