Cited 4 time in
Two projection-based methods for bilevel pseudomonotone variational inequalities involving non-Lipschitz operators
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Tan, Bing | - |
| dc.contributor.author | Cho, Sun Young | - |
| dc.date.accessioned | 2022-12-26T07:20:49Z | - |
| dc.date.available | 2022-12-26T07:20:49Z | - |
| dc.date.issued | 2022-04 | - |
| dc.identifier.issn | 1578-7303 | - |
| dc.identifier.issn | 1579-1505 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/1461 | - |
| dc.description.abstract | In this paper, we propose two new iterative algorithms to discover solutions of bilevel pseudomonotone variational inequalities with non-Lipschitz continuous operators in real Hilbert spaces. Our proposed algorithms need to compute the projection on the feasible set only once in each iteration although they employ Armijo line search methods. Strong convergence theorems of the suggested algorithms are established under suitable and weaker conditions. Some numerical experiments and applications are given to demonstrate the performance of the offered algorithms compared to some known ones. | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | Real Academia de Ciencias Exactas, Fisicas y Naturales | - |
| dc.title | Two projection-based methods for bilevel pseudomonotone variational inequalities involving non-Lipschitz operators | - |
| dc.type | Article | - |
| dc.publisher.location | 이탈리아 | - |
| dc.identifier.doi | 10.1007/s13398-021-01205-1 | - |
| dc.identifier.scopusid | 2-s2.0-85123071964 | - |
| dc.identifier.wosid | 000743927700001 | - |
| dc.identifier.bibliographicCitation | Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales - Serie A: Matematicas, v.116, no.2 | - |
| dc.citation.title | Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales - Serie A: Matematicas | - |
| dc.citation.volume | 116 | - |
| dc.citation.number | 2 | - |
| dc.type.docType | Article | - |
| dc.description.isOpenAccess | N | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalResearchArea | Mathematics | - |
| dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
| dc.relation.journalWebOfScienceCategory | Mathematics | - |
| dc.relation.journalWebOfScienceCategory | Multidisciplinary Sciences | - |
| dc.subject.keywordPlus | SUBGRADIENT EXTRAGRADIENT METHOD | - |
| dc.subject.keywordPlus | CONVERGENCE | - |
| dc.subject.keywordPlus | ALGORITHM | - |
| dc.subject.keywordAuthor | Bilevel variational inequality | - |
| dc.subject.keywordAuthor | Inertial method | - |
| dc.subject.keywordAuthor | Armijo stepsize | - |
| dc.subject.keywordAuthor | Pseudomonotone mapping | - |
| dc.subject.keywordAuthor | Non-Lipschitz operator | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
