Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

설비진단을 위한 초음파 신호의 특징분석 적용

Full metadata record
DC Field Value Language
dc.contributor.author박동희-
dc.contributor.author안병현-
dc.contributor.author김효중-
dc.contributor.author하정민-
dc.contributor.author임강민-
dc.contributor.author최병근-
dc.date.accessioned2022-12-26T19:17:08Z-
dc.date.available2022-12-26T19:17:08Z-
dc.date.issued2017-
dc.identifier.issn1598-2785-
dc.identifier.issn2287-5476-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/14355-
dc.description.abstractUltrasound signal is widely used to detect fault by heterodyned signal. Typically an expert will scan around the object with the scanning module while listening through headphones and observing a display panel. But this diagnosis procedure is required by specialized expert and hardly detect early defect. In this paper, Feature selection based on GA (genetic algorithms) is selected from the features of ultrasound signal on frequency domain and time domain. Then, by using the Support Vector Machine one of the machine learning, the performance of classification is evaluated by extracted features and selected features. The results of classification is compared with feature extraction based on PCA (principal component analysis). Therefore, the feature selected for each defect can be used as a reference by feature analysis for ultrasound.-
dc.format.extent7-
dc.language한국어-
dc.language.isoKOR-
dc.publisher한국소음진동공학회-
dc.title설비진단을 위한 초음파 신호의 특징분석 적용-
dc.title.alternativeApplication of Feature Analysis of Ultrasound for Diagnosis-
dc.typeArticle-
dc.publisher.location대한민국-
dc.identifier.doi10.5050/KSNVE.2017.27.5.566-
dc.identifier.bibliographicCitation한국소음진동공학회논문집, v.27, no.5, pp 566 - 572-
dc.citation.title한국소음진동공학회논문집-
dc.citation.volume27-
dc.citation.number5-
dc.citation.startPage566-
dc.citation.endPage572-
dc.identifier.kciidART002274741-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClasskci-
dc.subject.keywordAuthorUltrasound-
dc.subject.keywordAuthorGenetic Algorithm-
dc.subject.keywordAuthorBearing Defect-
dc.subject.keywordAuthorElectrical Discharge-
dc.subject.keywordAuthorFeature Selection-
dc.subject.keywordAuthor초음파-
dc.subject.keywordAuthor유전자 알고리듬-
dc.subject.keywordAuthor베어링 결함-
dc.subject.keywordAuthor전기 방전-
dc.subject.keywordAuthor특징 선택-
Files in This Item
There are no files associated with this item.
Appears in
Collections
해양과학대학 > ETC > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Choi, Byeong Keun photo

Choi, Byeong Keun
해양과학대학 (스마트에너지기계공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE