Detailed Information

Cited 3 time in webofscience Cited 3 time in scopus
Metadata Downloads

A Compact Electron Transport Layer Using a Heated Tin-Oxide Colloidal Solution for Efficient Perovskite Solar Cells

Full metadata record
DC Field Value Language
dc.contributor.authorMeng, Juan-
dc.contributor.authorRohr, Jason A.-
dc.contributor.authorWang, Hang-
dc.contributor.authorSartor, B. Edward-
dc.contributor.authorSong, Dandan-
dc.contributor.authorKatzenberg, Adlai-
dc.contributor.authorModestino, Miguel A.-
dc.contributor.authorXu, Zheng-
dc.contributor.authorKong, Jaemin-
dc.contributor.authorTaylor, Andre D.-
dc.date.accessioned2022-12-26T07:20:41Z-
dc.date.available2022-12-26T07:20:41Z-
dc.date.issued2022-04-
dc.identifier.issn2367-198X-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/1426-
dc.description.abstractTin dioxide is a frequently reported electron transporting material for perovskite solar cells (PSCs) that yields high-performance devices and can be solution processed from aqueous colloidal solutions. While being very simple to process, electron transport layers deposited in this manner often lead to nonuniform film morphology, significantly affecting the morphology of the subsequent perovskite layer, lowering the overall device performance. Herein, it is shown that heating the SnO2 colloidal solution (70 degrees C) results in compact SnO2 films with increased surface coverage and fewer gaps in the SnO2 film. Such films possess threefold higher lateral electrical conductivity than those obtained from room-temperature solutions. The narrow gaps in the SnO2 film also reduce the chances of direct contact between the indium tin oxide electrode and the perovskite layer, yielding better contact with less voltage loss. The improved SnO2 surface coverage induces larger perovskite grains (approximate to 565 nm) than those prepared from the room-temperature solution (approximate to 273 nm). Finally, using these compact SnO2 layers, efficient and stable PSCs that retain approximate to 85% of the initial power conversion efficiency of 20.67% after 100 h of maximum power point tracking are demonstrated.-
dc.language영어-
dc.language.isoENG-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.titleA Compact Electron Transport Layer Using a Heated Tin-Oxide Colloidal Solution for Efficient Perovskite Solar Cells-
dc.typeArticle-
dc.publisher.location독일-
dc.identifier.doi10.1002/solr.202100794-
dc.identifier.scopusid2-s2.0-85122326289-
dc.identifier.wosid000738801600001-
dc.identifier.bibliographicCitationSolar RRL, v.6, no.4-
dc.citation.titleSolar RRL-
dc.citation.volume6-
dc.citation.number4-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.subject.keywordPlusSNO2-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusGROWTH-
dc.subject.keywordPlusMETAL-
dc.subject.keywordPlusFILMS-
dc.subject.keywordAuthoraqueous colloidal solutions-
dc.subject.keywordAuthorinterface-
dc.subject.keywordAuthorperovskite solar cells-
dc.subject.keywordAuthorSnO2 electron transport layers-
dc.subject.keywordAuthorthin films-
Files in This Item
There are no files associated with this item.
Appears in
Collections
자연과학대학 > ETC > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kong, Jae Min photo

Kong, Jae Min
자연과학대학 (수학물리학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE