Detailed Information

Cited 1 time in webofscience Cited 1 time in scopus
Metadata Downloads

Eichler-Shimura isomorphism in higher level cases and its applications

Full metadata record
DC Field Value Language
dc.contributor.authorChoi, So Young-
dc.contributor.authorKim, Chang Heon-
dc.date.accessioned2022-12-26T18:34:33Z-
dc.date.available2022-12-26T18:34:33Z-
dc.date.issued2017-08-
dc.identifier.issn0022-314X-
dc.identifier.issn1096-1658-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/13571-
dc.description.abstractLet Gamma be a Fuchsian group of the first kind. The Eichler-Shimura isomorphism states that the space S-k (Gamma) is isomorphic to the first (parabolic) cohomology group associated to the Gamma-module Rk-1 with an appropriate Gamma-action. Manin reformulated the Eichler-Shimura isomorphism for the case Gamma = SL2(Z) in terms of periods of cusp forms. In this paper we extend Manin's reformulation to the case Gamma = Gamma(+)(0)(p) with p is an element of {2, 3}. The Manin relations describe relations between periods of cusp forms by using Hecke operators and continued fractions. We also extend the Manin relations and homogeneity theorem to cusp forms on Gamma(+)(0)(2) without using continued fractions. (C) 2017 Elsevier Inc. All rights reserved.-
dc.format.extent28-
dc.language영어-
dc.language.isoENG-
dc.publisherACADEMIC PRESS INC ELSEVIER SCIENCE-
dc.titleEichler-Shimura isomorphism in higher level cases and its applications-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1016/j.jnt.2017.01.002-
dc.identifier.scopusid2-s2.0-85015442752-
dc.identifier.wosid000399064800021-
dc.identifier.bibliographicCitationJOURNAL OF NUMBER THEORY, v.177, pp 353 - 380-
dc.citation.titleJOURNAL OF NUMBER THEORY-
dc.citation.volume177-
dc.citation.startPage353-
dc.citation.endPage380-
dc.type.docTypeArticle-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClasssci-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMathematics-
dc.relation.journalWebOfScienceCategoryMathematics-
dc.subject.keywordPlusPERIOD FUNCTIONS-
dc.subject.keywordPlusFORMS-
dc.subject.keywordAuthorPeriods-
dc.subject.keywordAuthorCusp forms-
dc.subject.keywordAuthorHecke operators-
dc.subject.keywordAuthorHecke eigenforms-
Files in This Item
There are no files associated with this item.
Appears in
Collections
사범대학 > 수학교육과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Choi, So Young photo

Choi, So Young
사범대학 (수학교육과)
Read more

Altmetrics

Total Views & Downloads

BROWSE