Detailed Information

Cited 90 time in webofscience Cited 96 time in scopus
Metadata Downloads

Carbon monoxide protects against hepatic steatosis in mice by inducing sestrin-2 via the PERK-eIF2 alpha-ATF4 pathwayopen access

Authors
Kim, Hyo JeongJoe, YeonsooKim, Seul-KiPark, Se-UngPark, JeongminChen, YingqingKim, JinRyu, JinhyunCho, Gyeong JaeSurh, Young-JoonRyter, Stefan W.Kim, Uh-HyunChung, Hun-Taeg
Issue Date
Sep-2017
Publisher
ELSEVIER SCIENCE INC
Keywords
Autophagy; Carbon monoxide; Endoplasmic reticulum stress; Hepatic steatosis
Citation
FREE RADICAL BIOLOGY AND MEDICINE, v.110, pp 81 - 91
Pages
11
Indexed
SCI
SCIE
SCOPUS
Journal Title
FREE RADICAL BIOLOGY AND MEDICINE
Volume
110
Start Page
81
End Page
91
URI
https://scholarworks.gnu.ac.kr/handle/sw.gnu/13501
DOI
10.1016/j.freeradbiomed.2017.05.026
ISSN
0891-5849
1873-4596
Abstract
Nonalcoholic fatty liver disease (NAFLD), the hepatic manifestation of the metabolic syndrome, has emerged as one of the most common causes of chronic liver disease in developed countries over the last decade. NAFLD comprises a spectrum of pathological hepatic changes, including steatosis, steatohepatitis, advanced fibrosis, and cirrhosis. Autophagy, a homeostatic process for protein and organelle turnover, is decreased in the liver during the development of NAFLD. Previously, we have shown that carbon monoxide (CO), a reaction product of heme oxygenase (HO) activity, can confer protection in NAFLD, though the molecular mechanisms remain unclear. We therefore investigated the mechanisms underlying the protective effect of CO on methionine/choline-deficient (MCD) diet-induced hepatic steatosis. We found that CO induced sestrin-2 (SESN2) expression through enhanced mitochondrial ROS production and protected against MCD-induced NAFLD progression through activation of autophagy. SESN2 expression was increased by CO or CO-releasing molecule (CORM2), in a manner dependent on signaling through the protein kinase R-like endoplasmic reticulum kinase (PERK), eukaryotic initiation factor-2 alpha (eIF2 alpha)/activating transcription factor-4 (ATF4)-dependent pathway. CO-induced SESN2 upregulation in hepatocytes contributed to autophagy induction through activation of 5'-AMP-activated protein kinase (AMPK) and inhibition of mechanistic target of rapamycin (mTOR) complex I (mTORC1). Furthermore, we demonstrate that CO significantly induced the expression of SESN2 and enhanced autophagy in the livers of MCD-fed mice or in MCD-media treated hepatocytes. Conversely, knockdown of SESN2 abrogated autophagy activation and mTOR inhibition in response to CO. We conclude that CO ameliorates hepatic steatosis through the autophagy pathway induced by SESN2 upregulation.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Medicine > Department of Medicine > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Cho, Gyeong Jae photo

Cho, Gyeong Jae
의과대학 (의학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE