Detailed Information

Cited 154 time in webofscience Cited 176 time in scopus
Metadata Downloads

Composted Cattle Manure Increases Microbial Activity and Soil Fertility More Than Composted Swine Manure in a Submerged Rice Paddy

Full metadata record
DC Field Value Language
dc.contributor.authorDas, Suvendu-
dc.contributor.authorJeong, Seung Tak-
dc.contributor.authorDas, Subhasis-
dc.contributor.authorKim, Pil Joo-
dc.date.accessioned2022-12-26T18:33:07Z-
dc.date.available2022-12-26T18:33:07Z-
dc.date.issued2017-09-05-
dc.identifier.issn1664-302X-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/13485-
dc.description.abstractLivestock waste composts with minimum inorganic fertilizer as a soil amendment in low-input intensive farming are a feasible agricultural practice to improve soil fertility and productivity and to mitigate soil degradation. The key benefits of the practice rely on the activities of soil microorganisms. However, the role of different livestock composts [composted cattle manure (CCM) vs. composted swine manure (CSM)] on soil microbes, their activities and the overall impact on soil fertility and productivity in a flooded paddy remains elusive. This study compares the effectiveness of CCM and CSM amendment on bacterial communities, activities, nutrient availability, and crop yield in a flooded rice cropping system. We used deep 16S amplicon sequencing and soil enzyme activities to decipher bacterial communities and activities, respectively. Both CCM and CSM amendment significantly increased soil pH, nutrient availability (C, N, and P), microbial biomass, soil enzyme activities indicative for C and N cycles, aboveground plant biomass and grain yield. And the increase in above-mentioned parameters was more prominent in the CCM treatment compared to the CSM treatment. The CCM amendment increased species richness and stimulated copiotrophic microbial groups (Alphaproteobacteria, Betaproteobacteria, and Firmicutes) which are often involved in degradation of complex organic compounds. Moreover, some dominant species (e.g., Azospirillum zeae, Azospirillum halopraeferens, Azospirillum rugosum, Clostridium alkalicellulosi, Clostridium caenicola, Clostridium termitidis, Clostridium cellulolyticum, Magnetospirillum magnetotacticum, Pleomorphomonas oryzae, Variovorax boronicumulans, Pseudomonas xanthomarina, Pseudomonas stutzeri, and Bacillus niacini) which have key roles in plant growth promotion and/or lignocellulose degradation were enhanced under CCM treatment compared to CSM treatment. Multivariate analysis revealed that soil pH and available carbon (C) and nitrogen (N) were the major, while total organic carbon (TOC), total nitrogen (TN), and available phosphorus (P) were the minor drivers of variation in bacterial communities. Overall, our observations suggest that CCM amendment is better than CSM amendment to improve soil fertility and crop yield in a submerged rice cropping system.-
dc.language영어-
dc.language.isoENG-
dc.publisherFRONTIERS MEDIA SA-
dc.titleComposted Cattle Manure Increases Microbial Activity and Soil Fertility More Than Composted Swine Manure in a Submerged Rice Paddy-
dc.typeArticle-
dc.publisher.location스위스-
dc.identifier.doi10.3389/fmicb.2017.01702-
dc.identifier.scopusid2-s2.0-85028778866-
dc.identifier.wosid000409347100001-
dc.identifier.bibliographicCitationFRONTIERS IN MICROBIOLOGY, v.8-
dc.citation.titleFRONTIERS IN MICROBIOLOGY-
dc.citation.volume8-
dc.type.docTypeArticle-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMicrobiology-
dc.relation.journalWebOfScienceCategoryMicrobiology-
dc.subject.keywordPlusFUMIGATION-EXTRACTION METHOD-
dc.subject.keywordPlusBACTERIAL COMMUNITIES-
dc.subject.keywordPlusORGANIC-CARBON-
dc.subject.keywordPlusRHIZOSPHERE-
dc.subject.keywordPlusMANAGEMENT-
dc.subject.keywordPlusDIVERSITY-
dc.subject.keywordPlusSYSTEMS-
dc.subject.keywordPlusSUSTAINABILITY-
dc.subject.keywordPlusFERTILIZATION-
dc.subject.keywordPlusAGROECOSYSTEM-
dc.subject.keywordAuthorlivestock waste compost-
dc.subject.keywordAuthorsoil enzyme-
dc.subject.keywordAuthorbacterial community-
dc.subject.keywordAuthorMiSeq-
dc.subject.keywordAuthorAPIZYM-
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Pil Joo photo

Kim, Pil Joo
대학원 (응용생명과학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE