Cited 0 time in
On the zeros of period functions associated to the Eisenstein series for Gamma(+)(0) (N)
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Choi, SoYoung | - |
| dc.contributor.author | Im, Bo-Hae | - |
| dc.date.accessioned | 2022-12-26T06:41:31Z | - |
| dc.date.available | 2022-12-26T06:41:31Z | - |
| dc.date.issued | 2022-05 | - |
| dc.identifier.issn | 0022-314X | - |
| dc.identifier.issn | 1096-1658 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/1341 | - |
| dc.description.abstract | We consider the period functions associated to the Eisenstein series for the Fricke group Gamma(+)(0) (N), the odd parts of the period functions and certain polynomials obtained from the period functions for Gamma(+)(0) (N), and we prove that all zeros of each of them lie on the circle |z| = 1/root N by applying the properties of a self-inversive polynomial. In particular, our result proves Berndt and Straub's suggested problem. (c) 2021 Elsevier Inc. All rights reserved. | - |
| dc.format.extent | 40 | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | Academic Press | - |
| dc.title | On the zeros of period functions associated to the Eisenstein series for Gamma(+)(0) (N) | - |
| dc.type | Article | - |
| dc.publisher.location | 미국 | - |
| dc.identifier.doi | 10.1016/j.jnt.2021.06.021 | - |
| dc.identifier.scopusid | 2-s2.0-85123422367 | - |
| dc.identifier.wosid | 000795908300010 | - |
| dc.identifier.bibliographicCitation | Journal of Number Theory, v.234, pp 200 - 239 | - |
| dc.citation.title | Journal of Number Theory | - |
| dc.citation.volume | 234 | - |
| dc.citation.startPage | 200 | - |
| dc.citation.endPage | 239 | - |
| dc.type.docType | Article | - |
| dc.description.isOpenAccess | N | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalResearchArea | Mathematics | - |
| dc.relation.journalWebOfScienceCategory | Mathematics | - |
| dc.subject.keywordPlus | SELF-INVERSIVE POLYNOMIALS | - |
| dc.subject.keywordAuthor | Period functions | - |
| dc.subject.keywordAuthor | Eisenstein series | - |
| dc.subject.keywordAuthor | N-self-inversive polynomials | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
