Detailed Information

Cited 9 time in webofscience Cited 13 time in scopus
Metadata Downloads

Critical Grain Size of Fine Aggregates in the View of the Rheology of Mortaropen access

Authors
Han, DongyeopKim, Jae HongLee, Jin HyunKang, Su-Tae
Issue Date
Dec-2017
Publisher
KOREA CONCRETE INST
Keywords
mortar; rheology; viscosity; fine aggregate; grain size; Krieger-Dougherty equation
Citation
INTERNATIONAL JOURNAL OF CONCRETE STRUCTURES AND MATERIALS, v.11, no.4, pp 627 - 635
Pages
9
Indexed
SCIE
SCOPUS
KCI
Journal Title
INTERNATIONAL JOURNAL OF CONCRETE STRUCTURES AND MATERIALS
Volume
11
Number
4
Start Page
627
End Page
635
URI
https://scholarworks.gnu.ac.kr/handle/sw.gnu/13303
DOI
10.1007/s40069-017-0217-4
ISSN
1976-0485
2234-1315
Abstract
The aim of this research was to investigate the validity of the Krieger-Dougherty model as a quantitative model to predict the viscosity of mortar depending on various aggregate sizes. The Krieger-Dougherty model reportedly predicted the viscosity of a suspension, which includes cement-based materials. Concrete or mortar incorporates natural resources, such as sand and gravel, referred to as aggregates, which can make up as much as 80% of the mixture by volume. Cement paste is a suspending medium at fresh state and then becomes a binder to link the aggregate after its hydration. Both the viscosity of the suspending medium and the characteristics of the aggregates, therefore, control the viscosity of the cement-based materials. In this research, various sizes and gradations of fine aggregate samples were prepared. Workability and rheological properties were measured using fresh-state mortar samples and incorporating the various-sized fine aggregates. Yield stress and viscosity measurements were obtained by using a rheometer. Based on the packing density of each fine aggregate sample, the viscosity of the mortar was predicted with the Krieger-Dougherty model. In addition, further adjustments were made to determine the water absorption of fine aggregates and was transferred from successful experiment to simulation for more accurate prediction. It was also determined that both yield stress and viscosity increase when the fine aggregate mean size decreases throughout the mix. However, when the mean size of the fine aggregates is bigger than 0.7 mm, the yield stress is not affected by the size of the fine aggregate. Additionally, if aggregate grains get smaller up to 0.3 mm, their water absorption is critical to the rheological behavior.
Files in This Item
There are no files associated with this item.
Appears in
Collections
공과대학 > School of Architectural Engineering > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Han, Dong Yeop photo

Han, Dong Yeop
공과대학 (건축공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE