Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Fourier series of functions involving euler polynomials

Full metadata record
DC Field Value Language
dc.contributor.authorKim, T.-
dc.contributor.authorKim, D.S.-
dc.contributor.authorJang, G.-W.-
dc.contributor.authorKwon, J.-
dc.date.accessioned2022-12-26T18:03:47Z-
dc.date.available2022-12-26T18:03:47Z-
dc.date.issued2018-
dc.identifier.issn1521-1398-
dc.identifier.issn1572-9206-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/13002-
dc.description.abstractRecently, T. Kim introduced Fourier series expansions of certain special polynomials and investigated some interesting identities and properties of these polynomials by using those Fourier series. In this paper, we consider three types of functions involving Euler polynomials and derive their Fourier series expansions. Moreover, we express each of them in terms of Benoulli functions. ?2018 by Eudoxus Press, LLC. All rights reserved.-
dc.format.extent20-
dc.language영어-
dc.language.isoENG-
dc.publisherEudoxus Press, LLC-
dc.titleFourier series of functions involving euler polynomials-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.scopusid2-s2.0-85027296039-
dc.identifier.bibliographicCitationJournal of Computational Analysis and Applications, v.25, no.5, pp 797 - 816-
dc.citation.titleJournal of Computational Analysis and Applications-
dc.citation.volume25-
dc.citation.number5-
dc.citation.startPage797-
dc.citation.endPage816-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscopus-
dc.subject.keywordAuthorEuler polynomials-
dc.subject.keywordAuthorFourier series-
Files in This Item
There are no files associated with this item.
Appears in
Collections
사범대학 > 수학교육과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kwon, Jong Kyum photo

Kwon, Jong Kyum
사범대학 (수학교육과)
Read more

Altmetrics

Total Views & Downloads

BROWSE