Detailed Information

Cited 11 time in webofscience Cited 11 time in scopus
Metadata Downloads

Co and Ti effect on hot workability of phosphor bronze

Full metadata record
DC Field Value Language
dc.contributor.authorShin, Hyeon Seok-
dc.contributor.authorHan, Seung Zeon-
dc.contributor.authorChoi, Eun-Ae-
dc.contributor.authorAhn, Jee Hyuk-
dc.contributor.authorKim, Sangshik-
dc.contributor.authorLee, Jehyun-
dc.date.accessioned2022-12-26T06:41:14Z-
dc.date.available2022-12-26T06:41:14Z-
dc.date.issued2022-05-
dc.identifier.issn0925-8388-
dc.identifier.issn1873-4669-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/1270-
dc.description.abstractIt is known that Cu-Sn alloy is difficult to hot working due to Sn segregation which occurs during solidification. Sn segregation is formed at grain boundary and it acts as crack initiation site during hot working. To suppress Sn segregation at grain boundary, density functional theory calculations were performed to search the proper elements that can stabilize Sn in Cu matrix. Based on the simulations, Co-Sn pairs are the most stable in Cu matrix, meaning that Co atoms can effectively stabilize Sn atoms in Cu matrix. To enhance the Co effect, we search the additional element to stabilize Co atom in Cu. As a result, Co atoms can stabilize more in form of Co-Ti pair in Cu. Three alloys, Cu-8Sn-0.1 P alloy (wt%), this alloy with 0.23 Co and 0.18 Ti, and alloy with 0.45 Co and 0.36 Ti were prepared. Co and Ti addition in Cu-Sn-P alloy formed the Co-Ti intermetallic compound and improved the uniformity of Sn concentration in matrix and lead reducing the Sn segregation at grain boundary. The reduction of Sn concentration difference in matrix resulted in uniform deformation and prevented crack initiation during high temperature deformation. As a result, Cu-Sn-P alloy with Co and Ti alloy prevented cracking after a hot compression test or hot rolling at 850 degrees C. (c) 2022 The Authors. Published by Elsevier B.V. CC_BY_4.0-
dc.language영어-
dc.language.isoENG-
dc.publisherElsevier BV-
dc.titleCo and Ti effect on hot workability of phosphor bronze-
dc.typeArticle-
dc.publisher.location스위스-
dc.identifier.doi10.1016/j.jallcom.2022.163778-
dc.identifier.scopusid2-s2.0-85123740687-
dc.identifier.wosid000749784300003-
dc.identifier.bibliographicCitationJournal of Alloys and Compounds, v.903-
dc.citation.titleJournal of Alloys and Compounds-
dc.citation.volume903-
dc.type.docTypeArticle-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.subject.keywordPlusBRAGGS LAW-
dc.subject.keywordPlusALLOY-
dc.subject.keywordPlusSEGREGATION-
dc.subject.keywordPlusMICROSTRUCTURE-
dc.subject.keywordPlusSOLIDIFICATION-
dc.subject.keywordPlusDIFFRACTION-
dc.subject.keywordAuthorBronze-
dc.subject.keywordAuthorCu-Sn alloy-
dc.subject.keywordAuthorHot workability-
dc.subject.keywordAuthorSn segregation-
dc.subject.keywordAuthorCo-Ti intermetallic compound-
Files in This Item
There are no files associated with this item.
Appears in
Collections
공학계열 > Dept.of Materials Engineering and Convergence Technology > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Sang Shik photo

Kim, Sang Shik
대학원 (나노신소재융합공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE